Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(9): 10539-10555, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463280

ABSTRACT

Covarine, copper phthalocyanine, a novel tooth whitening ingredient, has been incorporated into various toothpaste formulations using diverse technologies such as larger flakes, two-phase pastes, and microbeads. In this study, we investigated the behavior of covarine microbeads (200 µm) in Colgate advanced white toothpaste when mixed with artificial and real saliva. Our analysis utilized a custom-designed microfluidic mixer with 400 µm wide channels arranged in serpentine patterns, featuring a Y-shaped design for saliva and toothpaste flow. The mixer, fabricated using stereolithography 3D printing technology, incorporated a flexible transparent resin (Formlabs' Flexible 80A resin) and PMMA layers. COMSOL simulations were performed by utilizing parameters extracted from toothpaste and saliva datasheets, supplemented by laboratory measurements, to enhance simulation accuracy. Experimental assessments encompassing the behavior of covarine particles were conducted using an optical profilometer. Viscosity tests and electrical impedance spectroscopy employing recently developed all-carbon electrodes were employed to analyze different toothpaste dilutions. The integration of experimental data from microfluidic chips with computational simulations offers thorough insights into the interactions of covarine particles with saliva and the formation of microfilms on enamel surfaces.

2.
Micromachines (Basel) ; 14(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36984909

ABSTRACT

The connection of macrosystems with microsystems for in-line measurements is important in different biotechnological processes as it enables precise and accurate monitoring of process parameters at a small scale, which can provide valuable insights into the process, and ultimately lead to improved process control and optimization. Additionally, it allows continuous monitoring without the need for manual sampling and analysis, leading to more efficient and cost-effective production. In this paper, a 3D printed microfluidic (MF) chip for glucose (Glc) sensing in a liquid analyte is proposed. The chip made in Poly(methyl methacrylate) (PMMA) contains integrated serpentine-based micromixers realized via stereolithography with a slot for USB-like integration of commercial DropSens electrodes. After adjusting the sample's pH in the first micromixer, small volumes of the sample and enzyme are mixed in the second micromixer and lead to a sensing chamber where the Glc concentration is measured via chronoamperometry. The sensing potential was examined for Glc concentrations in acetate buffer in the range of 0.1-100 mg/mL and afterward tested for Glc sensing in a cell culturing medium. The proposed chip showed great potential for connection with macrosystems, such as bioreactors, for direct in-line monitoring of a quality parameter in a liquid sample.

3.
Materials (Basel) ; 15(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35806658

ABSTRACT

The aim of this study was to tackle the topic of appropriate recommendations for artificial-saliva and mouthwash usage. The contact angle, pH, and conductivity of two artificial saliva solutions, four mouthwashes, and their mixtures on enamel, glass-ionomer, and composite dental materials were measured. The measurements were conducted with a MATLAB algorithm to minimize human error. The obtained values for the contact angle were in the range from 7.98° to 52.6°, and they showed completely nonlinear and nonuniform behavior for all investigated liquids and on all investigated substrates. Results reveal statistically significant differences among all tested liquids on all investigated substrates (p < 0.05). pH values ranged from 1.54 to 7.01. A wide range of conductivity values were observed, from 1205µS/cm in the saliva-stimulating solution to 6679 mS/cm in the artificial saliva. Spearman's test showed a moderate positive correlation between the pH and conductivity of the tested fluids (R = 0.7108). A comparison of the data obtained using Image J software and the MATLAB algorithm showed consistency, not exceeding 5% error. When an experiment uses human material and bioactive materials THAT are used in biomedicine as substrates, an additional definition of protocols is highly recommended for future research on this topic.

SELECTION OF CITATIONS
SEARCH DETAIL
...