Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16133, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997414

ABSTRACT

Nickel(Ni)-containing materials have been widely used in a wide range of medical applications, including orthopaedics. Despite their excellent properties, there is still a problem with the release of nickel ions into the patient's body, which can cause changes in the behaviour of surrounding cells and tissues. This study aims to evaluate the effects of Ni on bone cells with an emphasis on the determination of Ni localization in cellular compartments in time. For these purposes, one of the most suitable models for studying the effects induced by metal implants was used-the patient's osteoarthritic cells. Thanks to this it was possible to simulate the pathophysiological conditions in the patient's body, as well as to evaluate the response of the cells which come into direct contact with the material after the implantation of the joint replacement. The largest differences in cell viability, proliferation and cell cycle changes occurred between Ni 0.5 mM and 1 mM concentrations. Time-dependent localization of Ni in cells showed that there is a continuous transport of Ni ions between the nucleus and the cytoplasm, as well as between the cell and the environment. Moreover, osteoarthritic osteoblasts showed faster changes in concentration and ability to accumulate more Ni, especially in the nucleus, than physiological osteoblasts. The differences in Ni accumulation process explains the higher sensitivity of patient osteoblasts to Ni and may be crucial in further studies of implant-derived cytotoxic effects.


Subject(s)
Cell Proliferation , Cell Survival , Nickel , Osteoarthritis , Osteoblasts , Nickel/metabolism , Osteoblasts/metabolism , Osteoblasts/drug effects , Humans , Osteoarthritis/metabolism , Osteoarthritis/pathology , Cell Survival/drug effects , Cell Proliferation/drug effects , Ions/metabolism , Cell Cycle/drug effects , Cells, Cultured
2.
Talanta ; 274: 125920, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574532

ABSTRACT

Herby, the interaction of metallothioneins with commonly used Pt-based anticancer drugs - cisplatin, carboplatin, and oxaliplatin - was investigated using the combined power of elemental (i.e. LA-ICP-MS, CE-ICP-MS) and molecular (i.e. MALDI-TOF-MS) analytical techniques providing not only required information about the interaction, but also the benefit of low sample consumption. The amount of Cd and Pt incorporated within the protein was determined for protein monomers and dimer/oligomers formed by non-oxidative dimerization. Moreover, fluorescence spectrometry using Zn2+-selective fluorescent indicator - FluoZin3 - was employed to monitor the ability of Pt drugs to release natively occurring Zn from the protein molecule. The investigation was carried out using two protein isoforms (i.e. MT2, MT3), and significant differences in behaviour of these two isoforms were observed. The main attention was paid to elucidating whether the protein dimerization/oligomerization may be the reason for the potential failure of the anticancer therapy based on these drugs. Based on the results, it was demonstrated that the interaction of MT2 (both monomers and dimers) interacted with Pt drugs significantly less compared to MT3 (both monomers and dimers). Also, a significant difference between monomeric and dimeric forms (both MT2 and MT3) was not observed. This may suggest that dimer formation is not the key factor leading to the inactivation of Pt drugs.


Subject(s)
Metallothionein , Spectrometry, Fluorescence , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Metallothionein/metabolism , Metallothionein/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrometry, Fluorescence/methods , Carboplatin/pharmacology , Oxaliplatin/pharmacology , Cisplatin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Platinum/chemistry , Metallothionein 3 , Cytostatic Agents/pharmacology , Cytostatic Agents/chemistry , Mass Spectrometry/methods , Humans
3.
Int J Biol Macromol ; 203: 583-592, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35090942

ABSTRACT

Here we developed a powerful tool for comprehensive data collection and mapping of molecular and elemental signatures in the Melanoma-bearing Libechov Minipig (MeLiM) model. The combination of different mass spectrometric methods allowed for detail investigation of specific melanoma markers and elements and their spatial distribution in tissue sections. MALDI-MSI combined with HPLC-MS/MS analyses resulted in identification of seven specific proteins, S100A12, CD163, MMP-2, galectin-1, tenascin, resistin and PCNA that were presented in the melanoma signatures. Furthermore, the ICP-MS method allowed for spatial detection of zinc, calcium, copper, and iron elements linked with the allocation of the specific binding proteins.


Subject(s)
Melanoma , Tandem Mass Spectrometry , Animals , Melanoma/metabolism , Proteins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Swine , Swine, Miniature
SELECTION OF CITATIONS
SEARCH DETAIL
...