Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Eur J Med Chem ; 171: 116-128, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30913526

ABSTRACT

Leishmaniasis is a group of diseases caused by protozoan parasites from the genus Leishmania. There are estimated 1.3 million new cases annually with a mortality of 20,000-30,000 per year, when patients are left untreated. Current chemotherapeutic drugs available present high toxicity and low efficacy, the latter mainly due to the emergence of drug-resistant parasites, which makes discovery of novel, safe, and efficacious antileishmanial drugs mandatory. The present work reports the synthesis, characterization by ESI-MS, 1H and 13C NMR, and FTIR techniques as well as in vitro and in vivo evaluation of leishmanicidal activity of guanidines derivatives presenting lower toxicity. Among ten investigated compounds, all being guanidines containing a benzoyl, a benzyl, and a substituted phenyl moiety, LQOF-G2 (IC50-ama 5.6 µM; SI = 131.8) and LQOF-G7 (IC50-ama 7.1 µM; SI = 87.1) were the most active against L. amazonensis intracellular amastigote, showing low cytotoxicity to the host cells according to their selectivity index. The most promising compound, LQOF-G2, was further evaluated in an in vivo model and was able to decrease 60% of the parasite load in foot lesions at a dose of 0.25 mg/kg/day. Moreover, this guanidine derivative demonstrated reduced hepatotoxicity compared to other leishmanicidal compounds and did not show nephrotoxicity, as determined by the analyses of biomarkers of hepatic damage and renal function, which make this compound a potential new hit for therapy against leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Guanidines/pharmacology , Leishmania/drug effects , Leishmaniasis/drug therapy , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Female , Guanidines/chemical synthesis , Guanidines/chemistry , Mice , Mice, Inbred BALB C , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship
2.
Rev. bras. farmacogn ; 28(6): 673-677, Nov.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-977745

ABSTRACT

ABSTRACT Leishmania infantum is an etiologic agent of visceral leishmaniasis. This disease is a neglected disease that can be fatal if not treated and additionally, the few therapeutic option present several drawbacks, including difficult route of administration and toxicity, which turn the search for new therapeutic alternatives necessary. Herein, we evaluated the leishmanicidal in vitro activity of the solanum extract from Solanum lycocarpum A. St.-Hil., Solanaceae, and the isolated alkaloids solasodine, solamargine and solasonine against promastigotes and intracellular amastigotes of L. infantum. Solasodine (IC50-pro = 4.7 µg/ml; IC50-ama = 10.8 µg/ml) and solamargine (IC50-pro = 8.1 µg/ml; IC50-ama = 3.0 µg/ml) exhibited interesting leishmanicidal ativity. Solasonine was approximately four-times (Selective Index 3.7) more selective to the parasite than to the host cells. This data suggest that solasonine might be considered as a potential drug candidate for leishmaniasis treatment.

3.
Mem Inst Oswaldo Cruz ; 113(3): 197-201, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29412359

ABSTRACT

Visceral leishmaniasis (VL) is fatal if left untreated. Infected dogs are important reservoirs of the disease, and thus specific identification of infected animals is very important. Several diagnostic tests have been developed for canine VL (CVL); however, these tests show varied specificity and sensitivity. The present study describes the recombinant protein rLc36, expressed by Leishmania infantum, as potential antigen for more sensitive and specific diagnosis of CVL based on an immunoenzymatic assay. The concentration of 1.0 µg/mL of rLc36 enabled differentiation of positive and negative sera and showed a sensitivity of 85% and specificity of 71% (with 95% confidence), with an accuracy of 76%.


Subject(s)
Dog Diseases/diagnosis , Leishmania infantum/immunology , Leishmaniasis, Visceral/veterinary , Protozoan Proteins/blood , Animals , Dogs , Electrophoresis, Polyacrylamide Gel/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Leishmaniasis, Visceral/diagnosis , Male , Mice , Sensitivity and Specificity
4.
Article in English | MEDLINE | ID: mdl-28507113

ABSTRACT

Leishmaniasis is a disease found throughout the (sub)tropical parts of the world caused by protozoan parasites of the Leishmania genus. Despite the numerous problems associated with existing treatments, pharmaceutical companies continue to neglect the development of better ones. The high toxicity of current drugs combined with emerging resistance makes the discovery of new therapeutic alternatives urgent. We report here the evaluation of a binuclear cyclopalladated complex containing Pd(II) and N,N'-dimethylbenzylamine (Hdmba) against Leishmania amazonensis The compound [Pd(dmba)(µ-N3)]2 (CP2) inhibits promastigote growth (50% inhibitory concentration [IC50] = 13.2 ± 0.7 µM) and decreases the proliferation of intracellular amastigotes in in vitro incubated macrophages (IC50 = 10.2 ± 2.2 µM) without a cytotoxic effect when tested against peritoneal macrophages (50% cytotoxic concentration = 506.0 ± 10.7 µM). In addition, CP2 was also active against T. cruzi intracellular amastigotes (IC50 = 2.3 ± 0.5 µM, selective index = 225), an indication of its potential for use in Chagas disease therapy. In vivo assays using L. amazonensis-infected BALB/c showed an 80% reduction in parasite load compared to infected and nontreated animals. Also, compared to amphotericin B treatment, CP2 did not show any side effects, which was corroborated by the analysis of plasma levels of different hepatic and renal biomarkers. Furthermore, CP2 was able to inhibit Leishmania donovani topoisomerase 1B (Ldtopo1B), a potentially important target in this parasite. (This study has been registered at ClinicalTrials.gov under identifier NCT02169141.).


Subject(s)
Antiprotozoal Agents/therapeutic use , Benzylamines/therapeutic use , Leishmania mexicana/drug effects , Leishmaniasis, Cutaneous/drug therapy , Palladium/therapeutic use , Topoisomerase I Inhibitors/therapeutic use , Amphotericin B/therapeutic use , Animals , Antiprotozoal Agents/adverse effects , Benzylamines/chemistry , Catalytic Domain/drug effects , Cells, Cultured , DNA Topoisomerases, Type I/drug effects , Disease Models, Animal , Kidney Function Tests , Leishmania mexicana/growth & development , Liver Function Tests , Macrophages, Peritoneal/drug effects , Male , Mice , Mice, Inbred BALB C , Neglected Diseases/drug therapy , Neglected Diseases/parasitology , Palladium/chemistry , Parasite Load , Parasitic Sensitivity Tests
5.
Bioorg Med Chem Lett ; 25(16): 3342-5, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26055530

ABSTRACT

Chalcones form a class of compounds that belong to the flavonoid family and are widely distributed in plants. Their simple structure and the ease of preparation make chalcones attractive scaffolds for the synthesis of a large number of derivatives enabling the evaluation of the effects of different functional groups on biological activities. In this Letter, we report the successful synthesis of a series of novel prenylated chalcones via Claisen-Schmidt condensation and the evaluation of their effect on the viability of the Trypanosomatidae parasites Leishmania amazonensis, Leishmania infantum and Trypanosoma cruzi.


Subject(s)
Chalcone/chemical synthesis , Chalcone/pharmacology , Leishmania infantum/drug effects , Trypanosoma cruzi/drug effects , Chalcone/chemistry , Inhibitory Concentration 50 , Prenylation , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology
6.
Bioorg Med Chem Lett ; 24(7): 1707-10, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24630563

ABSTRACT

Trypanosoma brucei and Trypanosoma cruzi are the etiologic agents of sleeping sickness and Chagas disease, respectively, two of the 17 preventable tropical infectious diseases (NTD) which have been neglected by governments and organizations working in the health sector, as well as pharmaceutical industries. High toxicity and resistance are problems of the conventional drugs employed against trypanosomiasis, hence the need for the development of new drugs with trypanocidal activity. In this work we have evaluated the trypanocidal activity of a series of N1,N2-dibenzylethane-1,2-diamine hydrochlorides (benzyl diamines) and N1-benzyl,N2-methyferrocenylethane-1,2-diamine hydrochlorides (ferrocenyl diamines) against T. brucei and T. cruzi parasite strains. We show that incorporation of the ferrocenyl group into the benzyl diamines increases the trypanocidal activity. The molecules exhibit potential trypanocidal activity in vitro against all parasite strains. Cytotoxicity assay was also carried out to evaluate the toxicity in HepG2 cells.


Subject(s)
Benzyl Compounds/pharmacology , Diamines/pharmacology , Ferrous Compounds/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma cruzi/drug effects , Benzyl Compounds/chemical synthesis , Benzyl Compounds/chemistry , Cell Survival/drug effects , Diamines/chemical synthesis , Diamines/chemistry , Dose-Response Relationship, Drug , Ferrous Compounds/chemical synthesis , Ferrous Compounds/chemistry , Hep G2 Cells , Humans , Metallocenes , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...