Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Phycol ; 56(1): 23-36, 2020 02.
Article in English | MEDLINE | ID: mdl-31642057

ABSTRACT

Long-distance dispersal plays a key role in evolution, facilitating allopatric divergence, range expansions, and species movement in response to environmental change. Even species that seem poorly suited to dispersal can sometimes travel long distances, for example via hitchhiking with other, more intrinsically dispersive species. In marine macroalgae, buoyancy can enable adults-and diverse hitchhikers-to drift long distances, but the evolution and role of this trait are poorly understood. The southern bull-kelp genus Durvillaea includes several non-buoyant and buoyant species, including some that have only recently been recognized. In revising the genus, we not only provide updated identification tools and describe two new species (D. incurvata comb. nov. from Chile and D. fenestrata sp. nov. from the Antipodes Islands), but also carry out biogeographic analyses to determine the evolutionary history of buoyancy in the genus. Although the ancestral state was resolved as non-buoyant, the distribution of species suggests that this trait has been both gained and lost, possibly more than once. We conclude that although buoyancy is a trait that can be useful for dispersal (creating evolutionary pressure for its gain), there is also evolutionary pressure for its loss as it restricts species to narrow environmental ranges (i.e., shallow depths).


Subject(s)
Kelp , Seaweed , Animals , Cattle , Chile , Male , Phylogeny
3.
Mar Environ Res ; 149: 67-79, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31154063

ABSTRACT

Current knowledge about the performance of floating seaweeds as dispersal vectors comes mostly from mid latitudes (30°-40°), but phylogeographic studies suggest that long-distance dispersal (LDD) is more common at high latitudes (50°-60°). To test this hypothesis, long-term field experiments with floating southern bull kelp Durvillaea antarctica were conducted along a latitudinal gradient (30°S, 37°S and 54°S) in austral winter and summer. Floating time exceeded 200d in winter at the high latitudes but in summer it dropped to 90d, being still higher than at low latitudes (<45d). Biomass variations were due to loss of buoyant fronds. Reproductive activity diminished during long floating times. Physiological changes included mainly a reduction in photosynthetic (Fv/Fm and pigments) rather than in defence variables (phlorotannins and antioxidant activity). The observed long floating persistence and long-term acclimation responses at 54°S support the hypothesis of LDD by kelp rafts at high latitudes.


Subject(s)
Acclimatization/physiology , Kelp , Plant Dispersal , Tannins/metabolism , Antarctic Regions , Biomass , Kelp/growth & development , Kelp/physiology , Pacific Ocean , Photosynthesis/physiology , Seasons , Temperature
4.
Biol Bull ; 235(3): 167-177, 2018 12.
Article in English | MEDLINE | ID: mdl-30624120

ABSTRACT

Kuphus polythalamius (Teredinidae) is one of the world's largest, most rarely observed, and least understood bivalves. Kuphus polythalamius is also among the few shallow-water marine species and the only teredinid species determined to harbor sulfur-oxidizing chemoautotrophic (thioautotrophic) symbionts. Until the recent discovery of living specimens in the Philippines, this species was known only from calcareous hard parts, fossils, and the preserved soft tissues of a single large specimen. As a result, the anatomy, biology, life history, and geographic range of K. polythalamius remain obscure. Here we report the collection and description of the smallest living specimens of K. polythalamius yet discovered and confirm the species identity of these individuals by using sequences of three genetic markers. Unlike previously collected specimens, all of which have been reported to occur in marine sediments, these specimens were observed burrowing in wood, the same substrate utilized by all other members of the family. These observations suggest that K. polythalamius initially settles on wood and subsequently transitions into sediment, where this species may grow to enormous sizes. This discovery led us to search for and find previously unidentified and misidentified wood-boring specimens of this species within museum collections, and it allowed us to show that the recent geographic range (since 1933) of this species extends across a 3000-mile span from the Philippines to Papua New Guinea and the Solomon Islands.


Subject(s)
Animal Distribution , Bivalvia/physiology , Animals , Chemoautotrophic Growth , Pacific Ocean , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...