Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Hazard Mater ; 476: 135134, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986413

ABSTRACT

The increased environmental presence of micro-/nanoplastics (MNPLs) and the potential health risks associated with their exposure classify them as environmental pollutants with special environmental and health concerns. Consequently, there is an urgent need to investigate the potential risks associated with secondary MNPLs. In this context, using "true-to-life" MNPLs, resulting from the laboratory degradation of plastic goods, may be a sound approach. These non-commercial secondary MNPLs must be labeled to track their presence/journeys inside cells or organisms. Because the cell internalization of MNPLs is commonly analyzed using fluorescence techniques, the use of fluorescent dyes may be a sound method to label them. Five different compounds comprising two chemical dyes (Nile Red and Rhodamine-B), one optical brightener (Opticol), and two industrial dyes (Amarillo Luminoso and iDye PolyPink) were tested to determine their potential for such applications. Using commercial standards of polystyrene nanoplastics (PSNPLs) with an average size of 170 nm, different characteristics of the selected dyes such as the absence of impact on cell viability, specificity for plastic staining, no leaching, and lack of interference with other fluorochromes were analyzed. Based on the overall data obtained in the wide battery of assays performed, iDye PolyPink exhibited the most advantages, with respect to the other compounds, and was selected to effectively label "true-to-life" MNPLs. These advantages were confirmed using a proposed protocol, and labeling titanium-doped PETNPLs (obtained from the degradation of milk PET plastic bottles), as an example of "true-to-life" secondary NPLs. These results confirmed the usefulness of iDye PolyPink for labeling MNPLs and detecting cell internalization.

2.
Environ Pollut ; 348: 123823, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38513942

ABSTRACT

The increasing presence of secondary micro/nanoplastics (MNPLs) in the environment requires knowing if they represent a real health concern. To such end, an important point is to test representative MNPLs such as the denominated true-to-life MNPLs, resulting from the degradation of plastic goods in lab conditions. In this study, we have used polyethylene terephthalate (PET) NPLs resulting from the degradation of PET water bottles. Since inhalation is an important exposure route to environmental MNPLS, we have used mouse alveolar macrophages (MH-S) as a target cell, and the study focused only on the cells that have internalized them. This type of approach is novel as it may capture the realistic adverse effects of PETNPLs only in the internalized cells, thereby mitigating any biases while assessing the risk of these MNPLs. Furthermore, the study utilized a set of biomarkers including intracellular reactive oxygen species (ROS) levels, variations on the mitochondrial membrane potential values, and the macrophage polarization to M1 (pro-inflammatory response) and M2 (anti-proinflammatory response) as possible cellular effects due to PETNPLs in only the cells that internalized PETNPLs. After exposures lasting for 3 and 24 h to a range of concentrations (0, 25, 50, and 100 µg/mL) the results indicate that no toxicity was induced despite the 100% internalization observed at the highest concentration. Significant intracellular levels of ROS were observed, mainly at exposures lasting for 24 h, in an indirect concentration-effect relationship. Interestingly, a reduction in the mitochondrial membrane potential was observed, but only at exposures lasting for 24 h, but without a clear concentration-effect relationship. Finally, PETNPL exposure shows a significant polarization from M0 to M1 and M2 subtypes. Polarization to M1 (pro-inflammatory stage) was more marked and occurred at both exposure times. Polarization to M2 (anti-inflammatory stage) was only observed after exposures lasting for 24 h. Due to the relevance of the described biomarkers, our results underscore the need for further research, to better understand the health implications associated with MNPL exposure.


Subject(s)
Macrophages, Alveolar , Microplastics , Humans , Animals , Mice , Polyethylene Terephthalates/toxicity , Reactive Oxygen Species , Biomarkers
3.
Nanomaterials (Basel) ; 11(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34947804

ABSTRACT

The presence of nanomaterials (NMs) in the environment may represent a serious risk to human health, especially in a scenario of chronic exposure. To evaluate the potential relationship between NM-induced epigenetic alterations and carcinogenesis, the present study analyzed a panel of 33 miRNAs related to the cell transformation process in BEAS-2B cells transformed by TiO2NP and long-term MWCNT exposure. Our battery revealed a large impact on miRNA expression profiling in cells exposed to both NMs. From this analysis, a small set of five miRNAs (miR-23a, miR-25, miR-96, miR-210, and miR-502) were identified as informative biomarkers of the transforming effects induced by NM exposures. The usefulness of this reduced miRNA battery was further validated in other previously generated transformed cell systems by long-term exposure to other NMs (CoNP, ZnONP, MSiNP, and CeO2NP). Interestingly, the five selected miRNAs were consistently overexpressed in all cell lines and NMs tested. These results confirm the suitability of the proposed set of mRNAs to identify the potential transforming ability of NMs. Particular attention should be paid to the epigenome and especially to miRNAs for hazard assessment of NMs, as wells as for the study of the underlying mechanisms of action.

4.
Biomolecules ; 11(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34680075

ABSTRACT

The increasing presence of micro- and nanoplastics (MNPLs) in the environment, and their consequent accumulation in trophic niches, could pose a potential health threat to humans, especially due to their chronic ingestion. In vitro studies using human cells are considered pertinent approaches to determine potential health risks to humans. Nevertheless, most of such studies have been conducted using short exposure times and high concentrations. Since human exposure to MNPLs is supposed to be chronic, there is a lack of information regarding the potential in vitro MNPLs effects under chronic exposure conditions. To this aim, we assessed the accumulation and potential outcomes of polystyrene nanoparticles (PSNPs), as a model of MNPLs, in undifferentiated Caco-2 cells (as models of cell target in ingestion exposures) under a relevant long-term exposure scenario, consisting of eight weeks of exposure to sub-toxic PSNPs concentrations. In such exposure conditions, culture-media was changed every 2-3 days to maintain constant exposure. The different analyzed endpoints were cytotoxicity, dysregulation of stress-related genes, genotoxicity, oxidative DNA damage, and intracellular ROS levels. These are endpoints that showed to be sensitive enough in different studies. The obtained results attest that PSNPs accumulate in the cells through time, inducing changes at the ultrastructural and molecular levels. Nevertheless, minor changes in the different evaluated genotoxicity-related biomarkers were observed. This would indicate that no DNA damage or oxidative stress is observed in the human intestinal Caco-2 cells after long-term exposure to PSNPs. This is the first study dealing with the long-term effects of PSNPs on human cultured cells.


Subject(s)
Intestines/drug effects , Nanoparticles/chemistry , Oxidative Stress/drug effects , Polystyrenes/pharmacology , Caco-2 Cells/drug effects , Cell Differentiation/drug effects , DNA Damage/drug effects , Humans , Microplastics/pharmacology , Nanoparticles/adverse effects , Polystyrenes/adverse effects
5.
J Hazard Mater ; 414: 125471, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33647622

ABSTRACT

The biomedical applications of graphene-based nanomaterials (GBN) have significantly grown in the last years. Many of these applications suppose their intravenous exposure and, in this way, GBN could encounter blood cells triggering an immunological response of unknown effects. Consequently, understanding the relationships between GBN and the immune system response should be a prerequisite for its adequate use in biomedicine. In the present study, we have conducted a little explored ex vivo exposure method in order to study the complexity of the secretome given by the interactions between GBN and blood cells. Blood samples from different healthy donors were exposed to three different types of GBN widely used in the biomedical field. In this sense, graphene oxide (GO), graphene nanoplatelets (GNPs), graphene nanoribbons (GNRs) and a panel of 105 proteins representatives of the blood secretome were evaluated. The results show broad changes in both the cytokines number and the expression levels, with important changes in inflammatory response markers. Furthermore, the indirect soft-agar assay was used as a tool to unravel the global functional impact of the found secretome changes. Our results indicate that the GBN-induced altered secretome can modify the natural anchorage-independent growth capacity of HeLa cells, used as a model. As a conclusion, this study describes an innovative approach to study the potential harmful effects of GBN, providing relevant data to be considered in the biomedical context when GBN are planned to be used in patients.


Subject(s)
Graphite , Nanostructures , Cytokines , Graphite/toxicity , HeLa Cells , Humans , Immune System , Nanostructures/toxicity
6.
Arch Toxicol ; 94(6): 1973-1984, 2020 06.
Article in English | MEDLINE | ID: mdl-32377776

ABSTRACT

The nanoparticles (NPs) exposure-related oxidative stress is considered among the main causes of the toxic effects induced by these materials. However, the importance of this mechanism has been mostly explored at short term. Previous experience with cells chronically exposed to ZnO and Co NPs hinted to the existence of an adaptative mechanism contributing to the development of oncogenic features. MTH1 is a well-described enzyme expressed exclusively in cancer cells and required to avoid the detrimental consequences of its high prooxidant microenvironment. In the present work, a significantly marked overexpression was found when MTH1 levels were monitored in long-term ZnO and Co NP-exposed cells, a fact that correlates with acquired 2.5-fold and 3.75-fold resistance to the ZnO and Co NPs treatment, respectively. The forced stable inhibition of Mth1 expression by shRNA, followed by 6 additional weeks of exposure, significantly reduced this acquired resistance and sensitized cells to the oxidizing agents H2O2 and KBrO3. When the oncogenic phenotype of Mth1 knock-down cells was evaluated, we found a decrease in several oncogenic markers, including proliferation, anchorage-independent cell growth, and migration and invasion potential. Thus, MTH1 elicits here as a relevant player in the NPs-induced toxicity and carcinogenicity. This study is the first to give a mechanistic explanation for long-term NPs exposure-derived effects. We propose MTH1 as a candidate biomarker to unravel NPs potential genotoxic and carcinogenic effects, as its expression is expected to be elevated only under exposure conditions able to induce DNA damage and the acquisition of an oncogenic phenotype.


Subject(s)
Cell Transformation, Neoplastic/chemically induced , Cobalt/toxicity , Fibroblasts/drug effects , Metal Nanoparticles/toxicity , Phosphoric Monoester Hydrolases/metabolism , Zinc Oxide/toxicity , Animals , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , DNA Damage , DNA Glycosylases/deficiency , DNA Glycosylases/genetics , Fibroblasts/enzymology , Fibroblasts/pathology , Mice , Neoplasm Invasiveness , Oxidative Stress/drug effects , Phosphoric Monoester Hydrolases/genetics , Time Factors
7.
Sci Rep ; 10(1): 144, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924810

ABSTRACT

Chronic kidney disease (CKD) patients have many affected physiological pathways. Variations in the genes regulating these pathways might affect the incidence and predisposition to this disease. A total of 722 Spanish adults, including 548 patients and 174 controls, were genotyped to better understand the effects of genetic risk loci on the susceptibility to CKD. We analyzed 38 single nucleotide polymorphisms (SNPs) in candidate genes associated with the inflammatory response (interleukins IL-1A, IL-4, IL-6, IL-10, TNF-α, ICAM-1), fibrogenesis (TGFB1), homocysteine synthesis (MTHFR), DNA repair (OGG1, MUTYH, XRCC1, ERCC2, ERCC4), renin-angiotensin-aldosterone system (CYP11B2, AGT), phase-II metabolism (GSTP1, GSTO1, GSTO2), antioxidant capacity (SOD1, SOD2, CAT, GPX1, GPX3, GPX4), and some other genes previously reported to be associated with CKD (GLO1, SLC7A9, SHROOM3, UMOD, VEGFA, MGP, KL). The results showed associations of GPX1, GSTO1, GSTO2, UMOD, and MGP with CKD. Additionally, associations with CKD related pathologies, such as hypertension (GPX4, CYP11B2, ERCC4), cardiovascular disease, diabetes and cancer predisposition (ERCC2) were also observed. Different genes showed association with biochemical parameters characteristic for CKD, such as creatinine (GPX1, GSTO1, GSTO2, KL, MGP), glomerular filtration rate (GPX1, GSTO1, KL, ICAM-1, MGP), hemoglobin (ERCC2, SHROOM3), resistance index erythropoietin (SOD2, VEGFA, MTHFR, KL), albumin (SOD1, GSTO2, ERCC2, SOD2), phosphorus (IL-4, ERCC4 SOD1, GPX4, GPX1), parathyroid hormone (IL-1A, IL-6, SHROOM3, UMOD, ICAM-1), C-reactive protein (SOD2, TGFB1,GSTP1, XRCC1), and ferritin (SOD2, GSTP1, SLC7A9, GPX4). To our knowledge, this is the second comprehensive study carried out in Spanish patients linking genetic polymorphisms and CKD.


Subject(s)
Polymorphism, Single Nucleotide , Renal Insufficiency, Chronic/genetics , Female , Genotype , Humans , Male , Middle Aged , Spain
8.
Nanomaterials (Basel) ; 9(12)2019 Nov 24.
Article in English | MEDLINE | ID: mdl-31771274

ABSTRACT

Thousands of nanomaterials (NMs)-containing products are currently under development or incorporated in the consumer market, despite our very limited understanding of their genotoxic potential. Taking into account that the toxicity and genotoxicity of NMs strongly depend on their physicochemical characteristics, many variables must be considered in the safety evaluation of each given NM. In this scenario, the challenge is to establish high-throughput methodologies able to generate rapid and robust genotoxicity data that can be used to critically assess and/or predict the biological effects associated with those NMs being under development or already present in the market. In this study, we have evaluated the advantages of using a flow cytometry-based approach testing micronucleus (MNs) induction (FCMN assay). In the frame of the EU NANoREG project, we have tested six different NMs-namely NM100 and NM101 (TiO2NPs), NM110 (ZnONPs), NM212 (CeO2NPs), NM300K (AgNPs) and NM401 (multi-walled carbon nanotubes (MWCNTs)). The obtained results confirm the ability of AgNPs and MWCNTs to induce MN in the human bronchial epithelial BEAS-2B cell line, whereas the other tested NMs retrieved non-significant increases in the MN frequency. Based on the alignment of the results with the data reported in the literature and the performance of the FCMN assay, we strongly recommend this assay as a reference method to systematically evaluate the potential genotoxicity of NMs.

9.
Nanomaterials (Basel) ; 9(10)2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31569740

ABSTRACT

The interesting physicochemical characteristics of nanomaterials (NMs) has brought about their increasing use and, consequently, their increasing presence in the environment. As emergent contaminants, there is an urgent need for new data about their potential side-effects on human health. Among their potential effects, the potential for DNA damage is of paramount relevance. Thus, in the context of the EU project NANoREG, the establishment of common robust protocols for detecting genotoxicity of NMs became an important aim. One of the developed protocols refers to the use of the comet assay, as a tool to detect the induction of DNA strand breaks. In this study, eight different NMs-TiO2NP (2), SiO2NP (2), ZnONP, CeO2NP, AgNP, and multi-walled carbon nanotubes (MWCNT)-were tested using two different human lung epithelial cell lines (A549 and BEAS-2B). The comet assay was carried out with and without the use of the formamidopyrimidine glycosylase (FPG) enzyme to detect the induction of oxidatively damaged DNA bases. As a high throughput approach, we have used GelBond films (GBF) instead of glass slides, allowing the fitting of 48 microgels on the same GBF. The results confirmed the suitability of the comet assay as a powerful tool to detect the genotoxic potential of NMs. Specifically, our results indicate that most of the selected nanomaterials showed mild to significant genotoxic effects, at least in the A549 cell line, reflecting the relevance of the cell line used to determine the genotoxic ability of a defined NM.

10.
Food Chem Toxicol ; 123: 258-267, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30403969

ABSTRACT

In vitro models of the intestinal barrier are being increasingly used to evaluate nanoparticles (NPs) exposure risk. Nevertheless, most of these studies have focused on short-term exposures lasting no more than 24 h of duration, which could underestimate the toxic effects of a given compound under a more realistic setting. Since the assessment of longer exposure time-points is crucial to evaluate the risk of cumulative exposure to NPs, we have analyzed the effects of AgNPs at different exposure time-points between 6 h and 4 days on the barrier model system constituted by Caco-2/HT29 cells. Our results indicate that i) the system is stable during this time frame; ii) AgNPs affect the barrier's integrity only at the highest concentration tested (100 µg/mL), and only after 96 h of exposure; iii) cellular uptake of AgNPs showed a time-dependent and concentration-dependent increase; iv) translocation through the barrier was only observed at the highest concentration and only after 96 h of exposure; v) the expression of genes involved in the barrier's structure differs depending on the exposure time analyzed. All these results reinforce our proposal of expanding exposure times beyond 24 h when performing assays for hazard assessment of NPs using in vitro models of the intestinal barrier.


Subject(s)
Metal Nanoparticles/toxicity , Silver/toxicity , Caco-2 Cells , Cell Differentiation/drug effects , Cell Survival/drug effects , Gene Expression/drug effects , HT29 Cells , Humans , Metal Nanoparticles/chemistry , Silver/chemistry , Silver/metabolism , Time Factors
11.
Chem Biol Interact ; 283: 38-46, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29378162

ABSTRACT

Since ingestion constitute one of the main routes of nanoparticles (NPs) exposure, intestinal cells seems to be a suitable choice to evaluate their potential harmful effects. Caco-2 cells, derived from a human colon adenocarcinoma, have the ability to differentiate forming consistent cell monolayer structures. For these reasons Caco-2 cells, both in their undifferentiated or differentiated state, are extendedly used. We have used well-structured monolayers of differentiated Caco-2 cells, as a model of intestinal barrier, to evaluate potential harmful effects associated to CeO2NPs exposure via ingestion. Different parameters such as cell toxicity, monolayer integrity and permeability, cell internalization, translocation through the monolayer, and induction of DNA damage were evaluated. No toxic effects of CeO2NPs were observed, independently of the differentiated state of the Caco-2 cells. In the same way, no effects on the monolayer integrity/permeability were observed. Although important cell uptake was demonstrated in undifferentiated cells (by using confocal microscopy), CeO2NPs remained mostly attached to the apical membrane in the differentiated cells. In spite of this apparent lack of uptake in differentiated cells, translocation of CeO2NPs to the basolateral chamber was observed by using confocal microscopy. Finally no genotoxic effects were observed when the comet assay was used, although decreases in the levels of oxidized bases were observed, supporting the antioxidant role of CeO2NPs.


Subject(s)
Cell Differentiation/drug effects , Cerium/chemistry , Metal Nanoparticles/toxicity , Caco-2 Cells , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , DNA Damage/drug effects , Humans , Intestinal Mucosa/metabolism , Intestines/cytology , Metal Nanoparticles/chemistry , Microscopy, Confocal , Particle Size
12.
PLoS One ; 11(6): e0157761, 2016.
Article in English | MEDLINE | ID: mdl-27327083

ABSTRACT

TBX15 is a T-box transcription factor essential for development, also proposed as a marker in prostate cancer; and, recently, its antiapoptotic function indicates a role in carcinogenesis. Regulation of TBX15 is uncovered. In this study, we investigated the regulation of TBX15 expression in human cancer cells, by analyzing the regulatory function of a 5'-distal conserved region of TBX15. Bisulfite sequencing showed high methylation of the CpG island contained in this region that was not correlated with TBX15 mRNA levels, in the cancer cell lines analyzed; however, after 5-aza-dC treatment of TPC-1 cells an increase of TBX15 expression was observed. We also found a significant response of TBX15 to TNF-α activation of the NF-κB pathway using five cancer cell lines, and similar results were obtained when NF-κB was activated with PMA/ionomycin. Next, by luciferase reporter assays, we identified the TBX15 regulatory region containing two functional NF-κB binding sites with response to NF-κBp65, mapping on the -3302 and -3059 positions of the TBX15 gene. Moreover, a direct interaction of NF-κBp65 with one of the two NF-κB binding sites was indicated by ChIP assays. In summary, we provide novel data showing that NF-κB signaling up-regulates TBX15 expression in cancer cells. Furthermore, the link between TBX15 and NF-κB found in this study may be important to understand cancer and development processes.


Subject(s)
Gene Expression Regulation, Neoplastic , NF-kappa B/metabolism , Neoplasms/genetics , T-Box Domain Proteins/genetics , 5' Flanking Region/genetics , Base Sequence , Binding Sites , Cell Line, Tumor , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Chromatin Immunoprecipitation , Conserved Sequence/genetics , DNA Methylation/drug effects , DNA Methylation/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasms/pathology , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/metabolism , T-Box Domain Proteins/metabolism , Tumor Necrosis Factor-alpha/pharmacology
13.
Apoptosis ; 20(10): 1338-46, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26216026

ABSTRACT

T-box genes regulate development processes, some of these genes having also a role in cell proliferation and survival. TBX15 is a T-box transcription factor that, recently, has been proposed as a marker in prostate cancer, but its function in carcinogenesis is unknown. Here the role of TBX15 in carcinogenesis was investigated using thyroid cancer cell lines. First, using western blot analysis, we show that the expression of TBX15 was altered in thyroid cancer cells lines with respect to normal thyroid cells. Transfection of thyroid cancer cells with TBX15, in the presence or absence of camptothecin as a cytotoxic agent, proved non effect of TBX15 in cell viability; but, it increased cell proliferation after 48 h of transfection (P < 0.01). Consistently, apoptosis was reduced in TBX15 transfected cells (P < 0.01) which also showed a decrease of the proapoptotic Bax regulator and an increase of the antiapoptotic Bcl2 and Bcl-XL regulators. Additionally, siRNA shutdown of constitutive TBX15 increased apoptosis. TBX15 transfection did not alter colony formation and cell migration. Taken together, these results indicate for the first time an antiapoptotic role of TBX15 in cancer cells, suggesting a contribution of TBX15 in carcinogenesis and the potential therapeutic target of TBX15.


Subject(s)
Apoptosis , T-Box Domain Proteins/genetics , Thyroid Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/metabolism , Camptothecin/pharmacology , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Humans , T-Box Domain Proteins/metabolism
14.
Int J Cancer ; 137(8): 1870-8, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-25855579

ABSTRACT

Thyroid cancer is the most heritable cancer of all those not displaying typical Mendelian inheritance. However, most of the genetic factors that would explain the high heritability remain unknown. Our aim was to identify additional common genetic variants associated with susceptibility to this disease. In order to do so, we performed a genome-wide association study in a series of 398 cases and 502 controls from Spain, followed by a replication in four well-defined Southern European case-control collections contributing a total of 1,422 cases and 1,908 controls. The association between the variation at the 9q22 locus near FOXE1 and thyroid cancer risk was consistent across all series, with several SNPs identified (rs7028661: OR = 1.64, p = 1.0 × 10(-22) , rs7037324: OR = 1.54, p = 1.2 × 10(-17) ). Moreover, the rare alleles of three SNPs (rs2997312, rs10788123 and rs1254167) at 10q26.12 showed suggestive evidence of association with higher risk of the disease (OR = 1.35, p = 1.2 × 10(-04) , OR = 1.26, p = 5.2 × 10(-04) and OR = 1.38, p = 5.9 × 10(-05) , respectively). Finally, the rare allele of rs4075570 at 6q14.1 conferred protection in the series studied (OR = 0.82, p = 2.0 × 10(-04) ). This study suggests that heterogeneity in genetic susceptibility between populations is a key feature to take into account when exploring genetic risk factors related to this disease.


Subject(s)
Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 6/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Thyroid Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Female , Genetic Heterogeneity , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Spain , Young Adult
15.
Sci Rep ; 5: 8922, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25753578

ABSTRACT

A genome-wide association study (GWAS) performed on a high-incidence Italian population followed by replications on low-incidence cohorts suggested a strong association of differentiated thyroid cancer (DTC) with single nucleotide polymorphisms (SNPs) at 9q22.33, 2q35, 20q11.22-q12 and 14q24.3. Moreover, six additional susceptibility loci were associated with the disease only among Italians. The present study had two aims, first to identify loci involved in DTC risk and then to assess the cumulative effect of the SNPs identified so far in the Italian population. The combined analysis of the previous GWAS and the present Italian study provided evidence of association with rs7935113 (GALNTL4, OR = 1.36, 95%CI 1.20-1.53, p-value = 7.41 × 10(-7)) and rs1203952 (FOXA2, OR = 1.29, 95%CI 1.16-1.44, p-value = 4.42 × 10(-6)). Experimental ENCODE and eQTL data suggested that both SNPs may influence the closest genes expression through a differential recruitment of transcription factors. The assessment of the cumulative risk of eleven SNPs showed that DTC risk increases with an increasing number of risk alleles (p-trend = 3.13 × 10(-47)). Nonetheless, only a small fraction (about 4% on the disease liability scale) of DTC is explained by these SNPs. These data are consistent with a polygenic model of DTC predisposition and highlight the importance of association studies in the discovery of the disease hereditability.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Thyroid Neoplasms/genetics , Alleles , Genetic Predisposition to Disease , Genetics, Population , Genotype , Hepatocyte Nuclear Factor 3-beta/genetics , Humans , Italy , N-Acetylgalactosaminyltransferases/genetics , Risk Factors , Thyroid Neoplasms/pathology
16.
Endocr Pathol ; 26(2): 111-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25698133

ABSTRACT

The transcription factor Yin Yang 1 (YY1) has an important regulatory role in tumorigenesis, but its implication in thyroid cancer has not been yet investigated. In the present study, we have analyzed the expression of YY1 in differentiated thyroid cancer and assessed the association of YY1 expression with clinical features. Expression of YY1 was evaluated in human thyroid cancer cell lines, a series of matched normal/tumor thyroid tissues and in a thyroid cancer tissue microarray, using real-time PCR, Western blot, and/or immunohistochemistry. YY1 was overexpressed in thyroid cancer cells, at transcription and protein levels. A significant increase of YY1 mRNA was also observed in tumor thyroid tissues. Moreover, immunohistochemical analysis of the thyroid cancer tissue microarray revealed that both papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC) present increased YY1 protein levels (48 and 19%, respectively). After stratification by the level of YY1 protein, positive YY1 expression identifies 88% of patients with PTC. The association of YY1 expression with clinicopathological features in PTC and FTC showed that YY1 expression was related with age at diagnosis. Our data indicates for the first time overexpression of YY1 in differentiated thyroid cancer, with YY1 being more frequently overexpressed in the PTC subtype.


Subject(s)
Adenocarcinoma, Follicular/genetics , Carcinoma/genetics , Thyroid Neoplasms/genetics , YY1 Transcription Factor/genetics , Adenocarcinoma, Follicular/metabolism , Adenocarcinoma, Follicular/pathology , Adult , Carcinoma/metabolism , Carcinoma/pathology , Carcinoma, Papillary , Cell Differentiation/genetics , Cell Transformation, Neoplastic/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Thyroid Cancer, Papillary , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Tumor Cells, Cultured , YY1 Transcription Factor/metabolism , Young Adult
17.
J Clin Endocrinol Metab ; 99(10): E2084-92, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25029422

ABSTRACT

CONTEXT: Genome-wide association studies (GWASs) on differentiated thyroid cancer (DTC) have identified robust associations with single nucleotide polymorphisms (SNPs) at 9q22.33 (FOXE1), 14q13.3 (NKX2-1), and 2q35 (DIRC3). Our recently published GWAS suggested additional susceptibility loci specific for the high-incidence Italian population. OBJECTIVE: The purpose of this study was to identify novel Italian-specific DTC risk variants based on our GWAS and to test them further in low-incidence populations. DESIGN: We investigated 45 SNPs selected from our GWAS first in an Italian population. SNPs that showed suggestive evidence of association were investigated in the Polish and Spanish cohorts. RESULTS: The combined analysis of the GWAS and the Italian replication study (2260 case patients and 2218 control subjects) provided strong evidence of association with rs10136427 near BATF (odds ratio [OR] =1.40, P = 4.35 × 10(-7)) and rs7267944 near DHX35 (OR = 1.39, P = 2.13 × 10(-8)). A possible role in DTC susceptibility in the Italian populations was also found for rs13184587 (ARSB) (P = 8.54 × 10(-6)) and rs1220597 (SPATA13) (P = 3.25 × 10(-6)). Only the associations between rs10136427 and rs7267944 and DTC risk were replicated in the Polish and the Spanish populations with little evidence of population heterogeneity (GWAS and all replications combined, OR = 1.30, P = 9.30 × 10(-7) and OR = 1.32, P = 1.34 × 10(-8), respectively). In silico analyses provided new insights into the possible functional consequences of the SNPs that showed the strongest association with DTC. CONCLUSIONS: Our findings provide evidence for novel DTC susceptibility variants. Further studies are warranted to identify the specific genetic variants responsible for the observed associations and to functionally validate our in silico predictions.


Subject(s)
Carcinoma, Papillary/epidemiology , Carcinoma, Papillary/genetics , Genome-Wide Association Study/methods , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/genetics , Adenocarcinoma, Follicular/epidemiology , Adenocarcinoma, Follicular/genetics , Adenocarcinoma, Follicular/pathology , Adenoma, Oxyphilic , Adult , Carcinoma, Papillary/pathology , Cell Differentiation , Female , Genetic Loci/genetics , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Humans , Incidence , Italy/epidemiology , Male , Polymorphism, Single Nucleotide , Prevalence , Risk Factors , Thyroid Neoplasms/pathology
18.
PLoS One ; 8(9): e74765, 2013.
Article in English | MEDLINE | ID: mdl-24086368

ABSTRACT

Papillary Thyroid Cancer (PTC) is a heterogeneous and complex disease; susceptibility to PTC is influenced by the joint effects of multiple common, low-penetrance genes, although relatively few have been identified to date. Here we applied a rigorous combined approach to assess both the individual and epistatic contributions of genetic factors to PTC susceptibility, based on one of the largest series of thyroid cancer cases described to date. In addition to identifying the involvement of TSHR variation in classic PTC, our pioneer study of epistasis revealed a significant interaction between variants in STK17B and PAX8. The interaction was detected by MD-MBR (p = 0.00010) and confirmed by other methods, and then replicated in a second independent series of patients (MD-MBR p = 0.017). Furthermore, we demonstrated an inverse correlation between expression of PAX8 and STK17B in a set of cell lines derived from human thyroid carcinomas. Overall, our work sheds additional light on the genetic basis of thyroid cancer susceptibility, and suggests a new direction for the exploration of the inherited genetic contribution to disease using association studies.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Carcinoma/genetics , Epistasis, Genetic , Genetic Predisposition to Disease , Paired Box Transcription Factors/genetics , Protein Serine-Threonine Kinases/genetics , Thyroid Neoplasms/genetics , Carcinoma, Papillary , Cell Line, Tumor , Female , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Male , Middle Aged , Models, Genetic , PAX8 Transcription Factor , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Risk Factors , Thyroid Cancer, Papillary
19.
J Clin Endocrinol Metab ; 98(10): E1674-81, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23894154

ABSTRACT

CONTEXT: Genome-wide association studies (GWASs) of differentiated thyroid cancer (DTC) have identified associations with polymorphisms at 2q35 (DIRC3), 8p12 (NRG1), 9q22.33 (FOXE1), and 14q13.2 (NKX2-1). However, most of the inherited genetic risk factors of DTC remain to be discovered. OBJECTIVE: Our objective was to identify additional common DTC susceptibility loci. DESIGN: We conducted a GWAS in a high-incidence Italian population of 690 cases and 497 controls and followed up the most significant polymorphisms in 2 additional Italian series and in 3 low-incidence populations totaling 2958 cases and 3727 controls. RESULTS: After excluding the most robust previously identified locus (9q22.33), the strongest association was shown by rs6759952, confirming the recently published association in DIRC3 (odds ratio [OR] = 1.21, P = 6.4 × 10(-10), GWAS and all replications combined). Additionally, in the combined analysis of the Italian series, suggestive associations were attained with rs10238549 and rs7800391 in IMMP2L (OR = 1.27, P = 4.1 × 10(-6); and OR = 1.25, P = 5.7 × 10(-6)), rs7617304 in RARRES1 (OR = 1.25, P = 4.6 × 10(-5)) and rs10781500 in SNAPC4/CARD9 (OR = 1.23, P = 3.5 × 10(-5)). CONCLUSIONS: Our findings provide additional insights into the genetic and biological basis of inherited genetic susceptibility to DTC. Additional studies are needed to determine the role of the identified polymorphisms in the development of DTC and their possible use in the clinical practice.


Subject(s)
Genetic Loci , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Thyroid Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Female , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Thyroid Neoplasms/pathology
20.
Int J Cancer ; 133(12): 2843-51, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23754668

ABSTRACT

Thyroid cancer risk involves the interaction of genetic and environmental factors. The thyroperoxidase (TPO) has a key role in the iodine metabolism, being essential for the thyroid function. Mutations in the TPO gene are common in congenital hypothyroidism, and there are also signs of the implication of TPO in thyroid cancer. We performed a case-control association study of genetic variants in TPO and differentiated thyroid carcinoma (DTC) in 1,586 DTC patients and 1,769 controls including two European populations (Italy: 1,190 DTC and 1,290 controls; Spain: 396 DTC and 479 controls). Multivariate logistic regression analyses were performed separately for each population and each single-nucleotide polymorphism (SNP). From the three studied polymorphisms, significant associations were detected between DTC and rs2048722 and rs732609 in both populations (p < 0.05). In the Italian population, both SNPs showed a negative association (rs2048722, odds ratio [OR] = 0.79, 95% confidence interval [CI] = 0.63-1.00, p = 0.045; rs732609, OR = 0.72, 95% CI = 0.55-0.94, p = 0.016), whereas in the Spanish population, these SNPs showed a positive association (rs2048722, OR = 1.39, 95% CI = 1.03-1.89, p = 0.033; rs732609, OR = 1.41, 95% CI = 1.06-1.87, p = 0.018). The corresponding associations for papillary or follicular thyroid cancer were similar to those for all DTC, within population. No association was detected for the third TPO polymorphism in the Italian and the Spanish populations. Our results, for the first time, point to TPO as a gene involved in the risk of DTC, and suggest the importance of interactions between TPO variants and other unidentified population-specific factors in determining thyroid cancer risk.


Subject(s)
Iodide Peroxidase/genetics , Polymorphism, Single Nucleotide , Thyroid Neoplasms/genetics , Female , Genotype , Humans , Italy , Logistic Models , Male , Risk , Spain , Thyroid Neoplasms/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...