Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731446

ABSTRACT

Ilama leaves are an important source of secondary metabolites with promising anticancer properties. Cancer is a disease that affects a great number of people worldwide. This work aimed to investigate the in vivo, in vitro and in silico anticancer properties of three acyclic terpenoids (geranylgeraniol, phytol and farnesyl acetate) isolated from petroleum ether extract of ilama leaves. Their cytotoxic activity against U-937 cells was assessed using flow cytometry to determine the type of cell death and production of reactive oxygen species (ROS). Also, a morphological analysis of the lymph nodes and a molecular docking study using three proteins related with cancer as targets, namely, Bcl-2, Mcl-1 and VEGFR-2, were performed. The flow cytometry and histomorphological analysis revealed that geranylgeraniol, phytol and farnesyl acetate induced the death of U-937 cells by late apoptosis and necrosis. Geranylgeraniol and phytol induced a significant increase in ROS production. The molecular docking studies showed that geranylgeraniol had more affinity for Bcl-2 and VEGFR-2. In the case of farnesyl acetate, it showed the best affinity for Mcl-1. This study provides information that supports the anticancer potential of geranylgeraniol, phytol and farnesyl acetate as compounds for the treatment of cancer, particularly with the potential to treat non-Hodgkin's lymphoma.


Subject(s)
Molecular Docking Simulation , Plant Extracts , Plant Leaves , Plants, Medicinal , Reactive Oxygen Species , Humans , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Mexico , Apoptosis/drug effects , Cell Line, Tumor , Animals , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Computer Simulation , Proto-Oncogene Proteins c-bcl-2/metabolism , U937 Cells
2.
Int J Mol Sci ; 25(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397053

ABSTRACT

Odontogenic keratocyst (OK) is a benign intraosseous cystic lesion characterized by a parakeratinized stratified squamous epithelial lining with palisade basal cells. It represents 10-12% of odontogenic cysts. The changes in its classification as a tumor or cyst have increased interest in its pathogenesis. OBJECTIVE: Identify key genes in the pathogenesis of sporadic OK through in silico analysis. MATERIALS AND METHODS: The GSE38494 technical sheet on OK was analyzed using GEOR2. Their functional and canonical signaling pathways were enriched in the NIH-DAVID bioinformatic platform. The protein-protein interaction network was constructed by STRING and analyzed with Cytoscape-MCODE software v 3.8.2 (score > 4). Post-enrichment analysis was performed by Cytoscape-ClueGO. RESULTS: A total of 768 differentially expressed genes (DEG) with a fold change (FC) greater than 2 and 469 DEG with an FC less than 2 were identified. In the post-enrichment analysis of upregulated genes, significance was observed in criteria related to the organization of the extracellular matrix, collagen fibers, and endodermal differentiation, while the downregulated genes were related to defensive response mechanisms against viruses and interferon-gamma activation. CONCLUSIONS: Our in silico analysis showed a significant relationship with mechanisms of extracellular matrix organization, interferon-gamma activation, and response to viral infections, which must be validated through molecular assays.


Subject(s)
Odontogenic Cysts , Odontogenic Tumors , Humans , Interferon-gamma , Odontogenic Cysts/genetics , Odontogenic Cysts/pathology , Odontogenic Tumors/pathology , Protein Interaction Maps/genetics
3.
Genes (Basel) ; 14(8)2023 07 26.
Article in English | MEDLINE | ID: mdl-37628576

ABSTRACT

Cell proliferation and invasion are characteristic of many tumors, including ameloblastoma, and are important features to target in possible future therapeutic applications. OBJECTIVE: The objective of this study was the identification of key genes and inhibitory drugs related to the cell proliferation and invasion of ameloblastoma using bioinformatic analysis. METHODS: The H10KA_07_38 gene profile database was analyzed by Rstudio and ShinyGO Gene Ontology enrichment. String, Cytoscape-MCODE, and Kaplan-Meier plots were generated, which were subsequently validated by RT-qPCR relative expression and immunoexpression analyses. To propose specific inhibitory drugs, a bioinformatic search using Drug Gene Budger and DrugBank was performed. RESULTS: A total of 204 significantly upregulated genes were identified. Gene ontology enrichment analysis identified four pathways related to cell proliferation and cell invasion. A total of 37 genes were involved in these pathways, and 11 genes showed an MCODE score of ≥0.4; however, only SLC6A3, SOX10, and LRP5 were negatively associated with overall survival (HR = 1.49 (p = 0.0072), HR = 1.55 (p = 0.0018), and HR = 1.38 (p = 0.025), respectively). The RT-qPCR results confirmed the significant differences in expression, with overexpression of >2 for SLC6A3 and SOX10. The immunoexpression analysis indicated positive LRP5 and SLC6A3 expression. The inhibitory drugs bioinformatically obtained for the above three genes were parthenolide and vorinostat. CONCLUSIONS: We identify LRP5, SLC6A3, and SOX10 as potentially important genes related to cell proliferation and invasion in the pathogenesis of ameloblastomas, along with both parthenolide and vorinostat as inhibitory drugs that could be further investigated for the development of novel therapeutic approaches against ameloblastoma.


Subject(s)
Ameloblastoma , Humans , Ameloblastoma/genetics , Vorinostat , Cell Proliferation/genetics , Computational Biology , SOXE Transcription Factors/genetics , Low Density Lipoprotein Receptor-Related Protein-5 , Dopamine Plasma Membrane Transport Proteins
4.
Plants (Basel) ; 12(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375955

ABSTRACT

BACKGROUND: Oral cancer has a high prevalence worldwide, and this disease is caused by genetic, immunological, and environmental factors. The main risk factors associated with oral cancer are smoking and alcohol. RESULTS: There are various strategies to reduce risk factors, including prevention programs as well as the consumption of an adequate diet that includes phytochemical compounds derived from cranberries (Vaccinium macrocarpon A.) and blueberries (Vaccinium corymbosum L.); these compounds exhibit antitumor properties. RESULTS: The main outcome of this review is as follows: the properties of phytochemicals derived from cranberries were evaluated for protection against risk factors associated with oral cancer. CONCLUSIONS: The secondary metabolites of cranberries promote biological effects that provide protection against smoking and alcoholism. An alternative for the prevention of oral cancer can be the consumption of these cranberries and blueberries.

5.
Pharmaceuticals (Basel) ; 16(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242507

ABSTRACT

The antihyperglycemic activity of ethanolic extract from Annona cherimola Miller (EEAch) and its products were evaluated using in vivo and in silico assays. An α-glucosidase inhibition was evaluated with oral sucrose tolerance tests (OSTT) and molecular docking studies using acarbose as the control. SGLT1 inhibition was evaluated with an oral glucose tolerance test (OGTT) and molecular docking studies using canagliflozin as the control. Among all products tested, EEAc, the aqueous residual fraction (AcRFr), rutin, and myricetin reduced the hyperglycemia in DM2 mice. During the carbohydrate tolerance tests, all the treatments reduced the postprandial peak such as the control drugs. In the molecular docking studies, rutin showed more affinity in inhibiting α-glucosidase enzymes and myricetin in inhibiting the SGLT1 cotransporter, showing ∆G values of -6.03 and -3.32 kcal/mol-1, respectively, in α-glucosidase enzymes. In the case of the SGLT1 cotransporter, molecular docking showed ∆G values of 22.82 and -7.89 in rutin and myricetin, respectively. This research sorts in vivo and in silico pharmacological studies regarding the use of A. cherimola leaves as a source for the development of new potential antidiabetic agents for T2D control, such as flavonoids rutin and myricetin.

6.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35890108

ABSTRACT

Linearolactone (LL) is a neo-clerodane type diterpene that has been shown to exert giardicidal effects; however, its mechanism of action is unknown. This work analyzes the cytotoxic effect of LL on Giardia intestinalis trophozoites and identifies proteins that could be targeted by this active natural product. Increasing concentrations of LL and albendazole (ABZ) were used as test and reference drugs, respectively. Cell cycle progression, determination of reactive oxygen species (ROS) and apoptosis/necrosis events were evaluated by flow cytometry (FCM). Ultrastructural alterations were analyzed by transmission electron microscopy (TEM). Ligand-protein docking analyses were carried out using the LL structure raised from a drug library and the crystal structure of an aldose reductase homologue (GdAldRed) from G. intestinalis. LL induced partial arrest at the S phase of trophozoite cell cycle without evidence of ROS production. LL induced pronecrotic death in addition to inducing ultrastructural alterations as changes in vacuole abundances, appearance of perinuclear and periplasmic spaces, and deposition of glycogen granules. On the other hand, the in silico study predicted that GdAldRed is a likely target of LL because it showed a favored change in Gibbs free energy for this complex.

7.
Plants (Basel) ; 11(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35270046

ABSTRACT

The antihyperglycemic activity of ethanolic extract from Salvia polystachya (EESpS) and its products was evaluated using in vivo, ex vivo and in silico assays; additionally, an acute toxicity assay was evaluated. EESpS was classified as a nontoxic class 5 drug. EESpS, ethyl acetate fraction (EtOAcFr), secondary-6-fraction (SeFr6), ursolic acid (UA), and oleanolic acid (OA) reduced the hyperglycemia in DM2 mice. α-glucosidase inhibition was evaluated with oral sucrose and starch tolerance tests (OSuTT and OStTT), an intestinal sucrose hydrolysis (ISH) assay and molecular docking studies using acarbose as control. SGLT1 inhibition was evaluated with oral glucose and galactose tolerance tests (OGTT and OGaTT), an intestinal glucose absorption (IGA) assay and molecular docking studies using canagliflozin as the control. During the carbohydrate tolerance tests, all the treatments reduced the postprandial peak, similar to the control drugs. During the ISH, IC50 values of 739.9 and 726.3 µM for UA and OA, respectively, were calculated. During the IGA, IC50 values of 966.6 and 849.3 for UA, OA respectively, were calculated. Finally, during the molecular docking studies, UA and OA showed ∆G values of -6.41 and -5.48 kcal/mol-1, respectively, on α-glucosidase enzymes. During SGLT1, UA and OA showed ∆G values of -10.55 and -9.65, respectively.

8.
Molecules ; 27(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35268788

ABSTRACT

Heliangolide-type sesquiterpene lactones (HTSLs) are phytocompounds with several pharmacological activities including cytotoxic and antitumor activity. Both bioactivities are related to an α-methylene-γ-lactone moiety and an ester group on carbon C-8 in the sesquiterpene lactone (SL) structure. Two HTSLs, incomptines A (AI) and B (IB) isolated from Decachaeta incompta, were evaluated for their cytotoxic activity on three leukemia cell lines: HL-60, K-562, and REH cells. Both compounds were subjected to a molecular docking study using target proteins associated with cancer such as topoisomerase IIα, topoisomerase IIß, dihydrofolate reductase, methylenetetrahydrofolate dehydrogenase, and Bcl-2-related protein A1. Results show that IA and IB exhibit cytotoxic activity against all cell lines used. The CC50 value of IA was 2-4-fold less than etoposide and methotrexate, two anticancer drugs used as positive controls. The cytotoxic activity of IB was close to that of etoposide and methotrexate. The molecular docking analysis showed that IA and IB have important interaction on all targets used. These findings suggest that IA and IB may serve as scaffolds for the development of new treatments for different types of leukemia.


Subject(s)
Molecular Docking Simulation
9.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35215308

ABSTRACT

Incomptines A (IA) and B (IB) are two sesquiterpene lactones with antiprotozoal, antibacterial, cytotoxic, antitumor, spermicidal, and phytotoxic properties. The antibacterial activity of IA and IB against bacteria causing diarrhoea have been reported; however, no information is available regarding their antibacterial activity on Vibrio cholerae. In this work, both compounds were evaluated for their anti-diarrhoeal potential using the bacterium V. cholerae, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on cholera toxin, and a cholera toxin-induced diarrhoea model in male Balb/c mice. In addition, a molecular docking study was carried out to understand the interaction of IA and IB with cholera toxin. In terms of antibacterial activity, IB was three times more active than IA on V. cholerae. In the case of SDS-PAGE analysis and the in silico study, IA was most effective, revealing its potential binding mode at a molecular level. In terms of anti-diarrhoeal activity, IA was 10 times more active than IB and racecadotril, an antisecretory drug used as positive control; the anti-diarrheal activity of IB was also closer than racecadotril. The results obtained from in vitro, in vivo, and computational studies on V. cholerae and cholera toxin support the potential of IA and IB as new anti-diarrhoeal compounds.

10.
Molecules ; 26(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34771055

ABSTRACT

Incomptine A (IA) is a sesquiterpene lactone isolated from Decachaeta incompta that induces apoptosis, reactive oxygen species production, and a differential protein expression on the U-937 (diffuse histiocytic lymphoma) cell line. In this work, the antitumor potential of IA was investigated on Balb/c mice inoculated with U-937 cells and through the brine shrimp lethality (BSL) test. Furthermore, IA was subjected to molecular docking study using as targets proteins associated with processes of cancer as apoptosis, oxidative stress, and glycolytic metabolism. In addition to determining the potential toxicity of IA in human, its acute toxicity was performed in mice. Results reveals that IA showed high antilymphoma activity and BSL with an EC50 of 2.4 mg/kg and LC50 16.7 µg/mL, respectively. The molecular docking study revealed that IA has strong interaction on all targets used. In the acute oral toxicity, IA had a LD50 of 149 mg/kg. The results showed that the activities of IA including antilymphoma activity, BSL, acute toxicity, and in silico interactions were close to the methotrexate, an anticancer drug used as positive control. These findings suggest that IA may serve as a candidate for the development of a new drug to combat lymphoma.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Animals , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Lethal Dose 50 , Ligands , Mice , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship , Xenograft Model Antitumor Assays
11.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34638856

ABSTRACT

Sesquiterpene lactones are of pharmaceutical interest due their cytotoxic and antitumor properties, which are commonly found within plants of several genera from the Asteraceae family such as the Decachaeta genus. From Decachaeta incompta four heliangolide, namely incomptines A-D have been isolated. In this study, cytotoxic properties of incomptine A (IA) were evaluated on four lymphoma cancer cell lines: U-937, Farage, SU-DHL-2, and REC-1. The type of cell death induced by IA and its effects on U-937 cells were analyzed based on its capability to induce apoptosis and produce reactive oxygen species (ROS) through flow cytometry with 4',6-diamidino-2-phenylindole staining, dual annexin V/DAPI staining, and dichlorofluorescein 2',7'-diacetate, respectively. A differential protein expression analysis study was carried out by isobaric tags for relative and absolute quantitation (iTRAQ) through UPLC-MS/MS. Results reveal that IA exhibited cytotoxic activity against the cell line U-937 (CC50 of 0.12 ± 0.02 µM) and the incubation of these cells in presence of IA significantly increased apoptotic population and intracellular ROS levels. In the proteomic approach 1548 proteins were differentially expressed, out of which 587 exhibited a fold-change ≥ 1.5 and 961 a fold-change ≤ 0.67. Most of these differentially regulated proteins are involved in apoptosis, oxidative stress, glycolytic metabolism, or cytoskeleton structuration.


Subject(s)
Apoptosis/drug effects , Lymphoma, Non-Hodgkin/metabolism , Proteome/metabolism , Proteomics/methods , Reactive Oxygen Species/metabolism , Sesquiterpenes/pharmacology , Asteraceae/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, Liquid/methods , Humans , Lymphoma, Non-Hodgkin/pathology , Protein Interaction Maps/drug effects , Tandem Mass Spectrometry/methods , U937 Cells
12.
Molecules ; 26(4)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670091

ABSTRACT

Salvia amarissima Ortega was evaluated to determinate its antihyperglycemic and lipid profile properties. Petroleum ether extract of fresh aerial parts of S. amarissima (PEfAPSa) and a secondary fraction (F6Sa) were evaluated to determine their antihyperglycemic activity in streptozo-cin-induced diabetic (STID) mice, in oral tolerance tests of sucrose, starch, and glucose (OSTT, OStTT, and OGTT, respectively), in terms of glycated hemoglobin (HbA1c), triglycerides (TG), and high-density lipoprotein (HDL). In acute assays at doses of 50 mg/kg body weight (b.w.), PEfAPSa and F6Sa showed a reduction in hyperglycemia in STID mice, at the first and fifth hour after of treatment, respectively, and were comparable with acarbose. In the sub-chronic test, PEfAPSa and F6Sa showed a reduction of glycemia since the first week, and the effect was greater than that of the acarbose control group. In relation to HbA1c, the treatments prevented the increase in HbA1c. In the case of TG and HDL, PEfAPSa and F6Sa showed a reduction in TG and an HDL increase from the second week. OSTT and OStTT showed that PEfAPSa and F6Sa significantly lowered the postprandial peak at 1 h after loading but only in sucrose or starch such as acarbose. The results suggest that S. amarissima activity may be mediated by the inhibition of disaccharide hydrolysis, which may be associated with an α-glucosidase inhibitory effect.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/chemistry , Salvia/chemistry , Animals , Blood Glucose/metabolism , Camphanes , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/pathology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Glucose/metabolism , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/pharmacology , Lipid Metabolism/drug effects , Mice , Panax notoginseng , Salvia miltiorrhiza , Triglycerides/blood
13.
Molecules ; 25(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722136

ABSTRACT

Annona diversifolia Safford and two acyclic terpenoids were evaluated to determine their antihyperglycemic activity as potential α-glucosidase and selective SGLT-1 inhibitiors. Ethanolic extract (EEAd), chloroformic (CHCl3Fr), ethyl acetate (EtOAcFr), aqueous residual (AcRFr), secondary 5 (Fr5) fractions, farnesal (1), and farnesol (2) were evaluated on normoglycemic and streptozocin-induced diabetic mice. EEAd, CHCl3Fr, Fr5, (1) and (2) showed antihyperglycemic activity. The potential as α-glucosidase inhibitors of products was evaluated with oral sucrose and lactose tolerance (OSTT and OLTT, respectively) and intestinal sucrose hydrolysis (ISH) tests; the potential as SGLT-1 inhibitors was evaluated using oral glucose tolerance (OGTT), intestinal glucose absorption (IGA), and urinary glucose excretion (UGE) tests. In OSTT and OLTT, all treatments showed significant activity at two and four hours. In ISH, half maximal effective concentrations (CE50) of 565, 662 and 590 µg/mL, 682 and 802 µM were calculated, respectively. In OGTT, all treatments showed significant activity at two hours. In IGA, CE50 values of 1059, 783 and 539 µg/mL, 1211 and 327 µM were calculated, respectively. In UGE Fr5, (1) and (2) showed significant reduction of the glucose excreted compared with canagliflozin. These results suggest that the antihyperglycemic activity is mediated by α-glucosidase and selective SGLT-1 inhibition.


Subject(s)
Annona/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/administration & dosage , Sodium-Glucose Transporter 1/metabolism , Terpenes/administration & dosage , alpha-Glucosidases/metabolism , Administration, Oral , Animals , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation/drug effects , Glycoside Hydrolase Inhibitors/administration & dosage , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Male , Mice , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rats , Streptozocin , Terpenes/chemistry , Terpenes/pharmacology
14.
Pharmacogn Mag ; 13(50): 240-244, 2017.
Article in English | MEDLINE | ID: mdl-28539715

ABSTRACT

BACKGROUND: Chiranthodendron pentadactylon Larreat. (Sterculiaceae) is a Mexican plant used in traditional medicine for the treatment of heart disease symptoms and infectious diarrhea. OBJECTIVE: To evaluate in vitro antiprotozoal and antibacterial activities and in vivo antidiarrheal activity from the flowers of C. pentadactylon using the extract, fractions, and major isolated flavonoids. MATERIALS AND METHODS: Bioassay-guided fractionation of the methanol extract of C. pentadactylon (MECP) led to the isolation of five flavonoids, tiliroside, astragalin, isoquercitrin, (+)-catechin, and (-)-epicatechin. Antimicrobial activities were tested on two protozoa (Entamoeba histolytica and Giardia lamblia) and nine bacterial enteropathogens (two Escherichia coli strains, two Shigella sonnei strains, two Shigella flexneri strains, two Salmonella sp. strains, and Vibrio cholerae) isolated from feces of children with acute diarrhea or dysentery and resistant to chloramphenicol. Also, antidiarrheal activity was tested on cholera toxin-induced diarrhea in male Balb-c mice. RESULTS: Epicatechin was the most potent antiamoebic and antigiardial compound with IC50 values of 1.9 µg/mL for E. histolytica and 1.6 µg/mL for G. lamblia; tiliroside showed moderate antiprotozoal activity against both protozoan. In contrast, in the antibacterial activity, tiliroside was the most potent compound on all microorganisms with minimum inhibitory concentration values less than 0.7 mg/mL. In the case of cholera toxin-induced diarrhea, epicatechin was the most potent flavonoid with IC50 of 14.7 mg/kg. CONCLUSION: Epicatechin and tiliroside were the flavonoids responsible for antimicrobial andantidiarrheal activities of C. pentadactylon. Its antiprotozoal, antibacterial, and antidiarrheal properties are in good agreement with the traditional medicinal use of C. pentadactylon for the treatment of infectious diarrhea. SUMMARY: Epicatechin was the most potent antiamoebic and antigiardial compound with IC50 values of 1.9 µg/mL for E. histolytica and 1.6 µg/mL for G. lamblia.Tiliroside showed antibacterial activity against all microorganisms tested with MIC values less than 0.7 mg/mL.Epicatechin was the most potent flavonoid on cholera toxin-induced diarrhea with IC50 of 14.7 mg/kg. Abbreviations used: MECP: Methanol extract of C. pentadactylon.

15.
Pharmacognosy Res ; 9(2): 133-137, 2017.
Article in English | MEDLINE | ID: mdl-28539736

ABSTRACT

BACKGROUND: Sphaeralcea angustifolia (Malvaceae) is extensively used in Mexican traditional medicine for the treatment of gastrointestinal disorders such as diarrhea and dysentery. OBJECTIVE: The current study was to validate the traditional use of S. angustifolia for the treatment of diarrhea and dysentery on biological grounds using in vitro antiprotozoal activity and computational experiments. MATERIALS AND METHODS: The ethanol extract, subsequent fractions, flavonoids, phenolic acids, and a sterol were evaluated on Entamoeba histolytica and Giardia lamblia trophozoites. Moreover, molecular docking studies on tiliroside were performed; it was tested for its affinity against pyruvate:ferredoxin oxidoreductase (PFOR) and fructose-1,6-bisphosphate aldolase (G/FBPA), two glycolytic enzymes of anaerobic protozoa. RESULTS: Bioassay-guided fractionation of extract of the aerial parts of S. angustifolia gives tiliroside and apigenin, caffeic acid, protocatechuic acid, and ß-sitosterol. The in vitro antiprotozoal assay showed that tiliroside was the most potent antiprotozoal compound on both protozoa with 50% inhibitory concentration values of 17.5 µg/mL for E. histolytica and 17.4 µg/mL for G. lamblia. Molecular docking studies using tiliroside showed its probable antiprotozoal mechanism with PFOR and G/FBPA. In both cases, tiliroside showed high affinity and inhibition constant theoretic for PFOR (lowest free binding energy from -9.92 kcal/mol and 53.57 µM, respectively) and G/FBPA (free binding energy from -7.17 kcal/mol and 55.5 µM, respectively), like to metronidazole, revealing its potential binding mode at molecular level. CONCLUSION: The results suggest that tiliroside seems to be a potential antiprotozoal compound responsible for antiamoebic and antigiardial activities of S. angustifolia. Its in vitro antiprotozoal activities are in good agreement with the traditional medicinal use of S. angustifolia in gastrointestinal disorders such as diarrhea and dysentery. SUMMARY: Bioassay-guided fractionation of extract of the aerial parts of S. angustifolia gives: tiliroside and apigenin, caffeic acid, protocatechuic acid) and ß-sitosterol. The in vitro antiprotozoal assay showed that tiliroside was the most potent antiprotozoal compound on both protozoa with IC50 values of 17.5 mg/mL for E. histolytica and 17.4 µg/mL for G. lamblia. Molecular docking studies using tiliroside showed its probable antiprotozoal mechanism with PFOR and G/FBPA. In both cases tiliroside showed high affinity and inhibition constant theoretic for PFOR (lowest free binding energy from -9.92 kcal/mol and 53.57 mM, respectively) and G/FBPA (free binding energy from -7.17 kcal/mol, respectively and 55.5 µM), like to metronidazole, revealing its potential binding mode at molecular level. The results suggest that tiliroside seems to be a potential antiprotozoal compound responsible for antiamoebic and antigiardial activities of Sphaeralcea angustifolia. Abbreviations Used: PFOR: Pyruvate:ferredoxin oxidoreductase; G/FBPA: Fructose 1,6 bisphosphate aldolase.

16.
Pharmacognosy Res ; 9(1): 1-6, 2017.
Article in English | MEDLINE | ID: mdl-28250646

ABSTRACT

BACKGROUND: Annona cherimola, known as "chirimoya" has been reported in Mexican traditional medicine for the treatment of diabetes. OBJECTIVE: The aims of the present study were to validate and assess the traditional use of A. cherimola as an antidiabetic agent. MATERIALS AND METHODS: The ethanol extract from A. cherimola (300 mg/kg, EEAc), subsequent fractions (100 mg/kg), and rutin (30 mg/kg) were studied on alloxan-induced type 2 diabetic (AITD) and normoglycemic rats. In addition, oral glucose tolerance test (OGTT) and oral sucrose tolerance test (OSTT) were performed in normoglycemic rats. Molecular docking technique was used to conduct the computational study. RESULTS: Bioassay-guided fractionation of EEAc afforded as major antihyperglycemic compound, rutin. EEAc attenuated postprandial hyperglycemia in acute test using AITD rats (331.5 mg/dL) carrying the glycemic levels to 149.2 mg/dL. Rutin after 2 h, attenuated postprandial hyperglycemia in an acute assay using AITD rats such as EEAc, with maximum effect (150.0 mg/dL) being seen at 4 h. The antihyperglycemic activities of EEAc and rutin were comparable with acarbose (151.3 mg/dL). In the subchronic assay on AITD rats, the EEAc and rutin showed a reduction of the blood glucose levels since the 1st week of treatment, reaching levels similar to normoglycemic state (116.9 mg/kg) that stayed constant for the rest of the assay. OGTT and OSTT showed that EEAc and rutin significantly lowered blood glucose levels in normoglycemic rats at 2 h after a glucose or sucrose load such as acarbose. Computational molecular docking showed that rutin interacted with four amino acids residues in the enzyme α-glucosidase. CONCLUSION: The results suggest that rutin an α-glucosidase inhibitor was responsible in part of the antihyperglycemic activity of A. cherimola. Its in vivo antihyperglycemic activity is in good agreement with the traditional use of A. cherimola for the treatment of diabetes. SUMMARY: The ethanol extract from Annona cherimola (300 mg/kg, EEAc), subsequent fractions (100 mg/kg) and rutin (30 mg/kg) were studied on alloxan-induced type 2 diabetic (AITD) and normoglycemic rats. The results suggest that rutin; an α-glucosidase inhibitor was responsible in part of the antihyperglycemic activity of A. cherimola. Its in vivo antihyperglycemic activity is in good agreement with the traditional use of A. cherimola for the treatment of diabetes. Abbreviations Used: EEAc: The ethanol extract from Annona cherimola, AITD: Alloxan-induced type 2 diabetic rats, OGTT: Oral glucose tolerance test, OSTT: Oral sucrose tolerance test, DM: Diabetes mellitus.

18.
J Ethnopharmacol ; 143(2): 716-9, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22884870

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chiranthodendron pentadactylon Larreat is frequently used in Mexican traditional medicine as well as in Guatemalan for several medicinal purposes, including their use in the control of diarrhea. AIM OF THE STUDY: This work was undertaken to obtain additional information that support the traditional use of Chiranthodendron pentadactylon Larreat, on pharmacological basis using the major antisecretory isolated compound from computational, in vitro and in vivo experiments. MATERIALS AND METHODS: (-)-Epicatechin was isolated from ethyl acetate fraction of the plant crude extract. In vivo toxin (Vibrio cholera or Escherichia coli)-induced intestinal secretion in rat jejunal loops models and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on Vibrio cholera toxin were used in experimental studies while the molecular docking technique was used to conduct computational study. RESULTS: The antisecretory activity of epicatechin was tested against Vibrio cholera and Escherichia coli toxins at oral dose 10 mg/kg in the rat model. It exhibited the most potent activity on Vibrio cholera toxin (56.9% of inhibition). In the case of Escherichia coli toxin its effect was moderate (24.1% of inhibition). SDS-PAGE analysis revealed that both (-)-epicatechin and Chiranthodendron pentadactylon extract interacted with the Vibrio cholera toxin at concentration from 80 µg/mL and 300 µg/mL, respectively. Computational molecular docking showed that epicatechin interacted with four amino acid residues (Asn 103, Phe 31, Phe 223 and The 78) in the catalytic site of Vibrio cholera toxin, revealing its potential binding mode at molecular level. CONCLUSION: The results derived from computational, in vitro and in vivo experiments on Vibrio cholera and Escherichia coli toxins confirm the potential of epicatechin as a new antisecretory compound and give additional scientific support to anecdotal use of Chiranthodendron pentadactylon Larreat in Mexican traditional medicine to treat gastrointestinal disorders such as diarrhea.


Subject(s)
Antidiarrheals/pharmacology , Catechin/pharmacology , Diarrhea/drug therapy , Malvaceae , Plant Extracts/pharmacology , Animals , Antidiarrheals/chemistry , Catechin/chemistry , Catechin/isolation & purification , Enterotoxins/administration & dosage , Flowers , Jejunum/metabolism , Male , Medicine, Traditional , Methanol/chemistry , Mexico , Molecular Docking Simulation , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley , Solvents/chemistry
19.
Med. oral patol. oral cir. bucal (Internet) ; 17(2): 183-189, mar. 2012. ilus, tab
Article in English | IBECS | ID: ibc-98938

ABSTRACT

Objective: To establish distribution frequency and demographic characteristics of salivary gland tumours (SGT)in order to identify possible risk profiles. Design of study: The present report constitutes an eight year retrospective study (January 2000-August 2007). The archives of the Clinical and Experimental Pathology Laboratory (Graduate and Research Division, Dental School, National Autonomous University of Mexico) as well as archives of the Surgical Pathology Service (General Hospital, Mexico City) were subject to revision in order to select all cases where SGT tumour diagnoses were emitted. Age and gender of patients as well as SGT topography were obtained from medical records. Selected cases were classified according to location of the lesion, histological lineage and biological behaviour. Results: 360 cases of SGT were included, 227 (67%) cases were benign tumours, while 83 cases (23%) were malignant tumours. SGT were most frequent in women with ages ranging from their 3rd to 5th decades of life.275 tumours were located in major salivary glands, 78.9% of them were identified in the parotid gland. The most frequent location of tumours arising from minor salivary glands (33 cases, 38%) was found in the palatine glands. Tumours of epithelial lineage were the predominant histological type. The most frequent benign tumours were pleomorphic adenomas (86.1%) and papillary cyst adenoma lymphomatosum (7.3%). The most frequent malignant tumours were adenoid cystic carcinomas (25%) and mucoepidermoid carcinomas (23.6%) (AU)


Subject(s)
Humans , Salivary Gland Neoplasms/epidemiology , Mouth Neoplasms/epidemiology , Mexico/epidemiology , Retrospective Studies , Neoplasms, Glandular and Epithelial/epidemiology , Adenoma, Pleomorphic/epidemiology , Adenolymphoma/epidemiology , Carcinoma, Adenoid Cystic/epidemiology , Carcinoma, Mucoepidermoid/epidemiology
20.
BMC Genet ; 12: 54, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21639918

ABSTRACT

BACKGROUND: Genetic interactions within hybrids influence their overall fitness. Understanding the details of these interactions can improve our understanding of speciation. One experimental approach is to investigate deviations from Mendelian expectations (segregation distortion) in the inheritance of mapped genetic markers. In this study, we used the copepod Tigriopus californicus, a species which exhibits high genetic divergence between populations and a general pattern of reduced fitness in F2 interpopulation hybrids. Previous studies have implicated both nuclear-cytoplasmic and nuclear-nuclear interactions in causing this fitness reduction. We identified and mapped population-diagnostic single nucleotide polymorphisms (SNPs) and used these to examine segregation distortion across the genome within F2 hybrids. RESULTS: We generated a linkage map which included 45 newly elucidated SNPs and 8 population-diagnostic microsatellites used in previous studies. The map, the first available for the Copepoda, was estimated to cover 75% of the genome and included markers on all 12 T. californicus chromosomes. We observed little segregation distortion in newly hatched F2 hybrid larvae (fewer than 10% of markers at p < 0.05), but strikingly higher distortion in F2 hybrid adult males (45% of markers at p < 0.05). Hence, segregation distortion was primarily caused by selection against particular genetic combinations which acted between hatching and maturity. Distorted markers were not distributed randomly across the genome but clustered on particular chromosomes. In contrast to other studies in this species we found little evidence for cytonuclear coadaptation. Instead, different linkage groups exhibited markedly different patterns of distortion, which appear to have been influenced by nuclear-nuclear epistatic interactions and may also reflect genetic load carried within the parental lines. CONCLUSION: Adult male F2 hybrids between two populations of T. californius exhibit dramatic segregation distortion across the genome. Distorted loci are clustered within specific linkage groups, and the direction of distortion differs between chromosomes. This segregation distortion is due to selection acting between hatching and adulthood.


Subject(s)
Copepoda/genetics , Hybridization, Genetic , Inheritance Patterns , Polymorphism, Single Nucleotide , Animals , Cell Nucleus/genetics , Chromosome Mapping/methods , Chromosomes/genetics , Crosses, Genetic , Female , Gene Library , Genetic Loci , Genome , Genotype , Larva/genetics , Male , Microsatellite Repeats , Mitochondria/genetics , Selection, Genetic , Sexual Behavior, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...