Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
World J Microbiol Biotechnol ; 36(10): 152, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32924087

ABSTRACT

The dynamics of volatilomes emitted during the interaction between plant-growth-promoting bacteria (PGPB) and the phytopathogen Fusarium solani were evaluated for 5 days. The first screening was done to evaluate the antagonist activity of volatile compounds emitted by PGPB against F. solani. Volatilomes from 11 PGPB were determined individually and together with F. solani by using solid-phase microextraction coupled to gas-chromatography-mass spectrometry. Isolates of PGPB belonged to the Bacillus genus and inhibited from 18 to 24% the fungal mycelium growth. The isolates also induced morphological alterations of fungal hyphae, like small globular vesicles and the formation of chlamydospores, suggesting a stress mechanism response by the fungus. Volatilome profile showed 49 different compounds that appeared in the bacterial-fungal interaction, such as ketones, sesquiterpenes, monoterpenoids, alkanes, alkenes, carboxylic acids, and fatty acids. Some ketones and alcohols were detected in high abundance only in the interaction PGPB-fungus at 3 and 5 days. Bacillus circulans A19, Bacillus amyloliquefaciens A21, and Bacillus wiedmannii S18 shared a group of emitted alcohols and ketones when they were exposed to F. solani. F. solani produced its own volatilome profile, with the presence of sesquiterpenes, such as α-cubebene and caryophyllene, which increased significantly in co-incubation with the tested bacteria, suggesting chemical communication between them.


Subject(s)
Antifungal Agents/pharmacology , Bacteria/metabolism , Bacterial Physiological Phenomena , Fusarium/drug effects , Microbial Interactions/physiology , Plant Development/physiology , Volatile Organic Compounds/pharmacology , Alkanes/pharmacology , Alkenes/pharmacology , Antifungal Agents/chemistry , Bacillus , Bacillus amyloliquefaciens , Bacteria/drug effects , Carboxylic Acids/pharmacology , Fatty Acids/pharmacology , Fusarium/growth & development , Fusarium/pathogenicity , Ketones/pharmacology , Microbial Interactions/drug effects , Monoterpenes/pharmacology , Mycelium/growth & development , Plant Diseases/microbiology , Sesquiterpenes/pharmacology , Soil Microbiology , Volatile Organic Compounds/chemistry
2.
3 Biotech ; 10(7): 292, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32551213

ABSTRACT

The aims of this work were to screen isolated bacteria with a dual capacity: to inhibit Fusarium solani and to promote plant growth. Also, volatile compounds that would be responsible for that effect were identified. Seventy bacterial strains from the air, agricultural soils, hydrocarbons-contaminated soils, and extremophile soils were tested. The former were identified by Matrix-Assisted Laser Desorption/Ionization-time of flight mass spectrometry and 16S rDNA sequencing. The plant growth-promoting bacteria (PGPB) and their capability for phosphate solubilization, siderophores production, and indole production were determined. Twenty isolates from Bacillus and Pseudomonas genera inhibited the mycelial growth up to 40% in direct assays. Eleven isolates significantly inhibited mycelial growth in 18-24% via volatile emissions. Volatile compounds related to antifungal activity or stress response include ketones, sesquiterpenes, monoterpenoids, alkanes, and fatty acids. Our results support the potential of these PGPB to act as biocontrol agents against fungal pathogens via volatile emissions.

3.
J Hazard Mater ; 192(1): 388-92, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21664049

ABSTRACT

Endosulfan is a hazardous organochlorine pesticide banned or restricted in several countries. However, it has been found in the environment and in animal samples. To study a potential way to bioremediate soils contaminated with this pesticide, two plant species of the genus Ocimum were studied: Ocimum basilicum L. and Ocimum minimum L., since they are economically feasible and well adapted to the climatic conditions of the Nayarit zone (Mexican pacific coast). Young plants were transplanted into soil experimentally polluted with endosulfan. Growth of both species was not affected by endosulfan, the plants grew, flourished, and produced seeds; 30 days later, endosulfan concentration was lower in the soil with O. basilicum than in the soil without plants. On day 90, no differences in endosulfan concentrations were found between soil with or without O. minimum. At day 1, plants in the polluted soil showed lipoperoxidation, as measured by thiobarbituric acid-reactive species (TBARS). Interestingly, a higher TBARS value was observed at day 3 in transplanted plants as compared to non-transplanted plants. In conclusion, both species can endure endosulfan pollution (as high as 1 g kg(-1)) in soils. O. basilicum seems to be an adequate candidate for bioremediation of soils polluted with endosulfan.


Subject(s)
Endosulfan/toxicity , Environmental Restoration and Remediation/methods , Ocimum/physiology , Soil Pollutants/toxicity , Endosulfan/metabolism , Lipid Peroxidation , Ocimum/growth & development , Soil Pollutants/metabolism
4.
Ecotoxicology ; 19(4): 819-25, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20091118

ABSTRACT

Substantial efforts have been devoted to developing and applying biomarkers for ecological risk assessment. Bivalve mollusks, such as mussels and oysters, are commonly used in environmental monitoring programs because of their wide geographical distribution, great sensitivity to environmental pollutants, and ability to accumulate anthropogenically derived chemicals at a high rate. Acetylcholinesterase (AChE) activity and metallothionein (MT's) content are representative specific biomarkers that indicate the presence of anticholinesterasic compounds (like organophosphorus and carbamate pesticides) and metals, respectively. The aim of this study was to evaluate AChE activity and MT's content in Crassostrea corteziensis from Boca de Camichín estuary. The results obtained here showed that AChE activity was 65% lower in oysters from Boca de Camichín than in control organisms. In contrast, MT's content in collected organisms was not statistically different from that in control organisms. AChE activity and MT's content in oysters could be used as early biomarkers of effects and exposure to pesticides and heavy metals, respectively, in aquatic environments.


Subject(s)
Acetylcholinesterase/metabolism , Crassostrea/drug effects , Environmental Monitoring/methods , Gills/drug effects , Metallothionein/metabolism , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Crassostrea/enzymology , Gills/enzymology , Mexico , Pacific Ocean , Risk Assessment , Seawater/chemistry , Water Pollutants, Chemical/analysis
5.
Fish Shellfish Immunol ; 27(2): 383-5, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19540348

ABSTRACT

Fish resistance to microorganisms depends basically on the immune response. Although there are several studies on the diazinon mammalian immunotoxicity, in the case of fish there are only few. The aim of present study was to evaluate the effect of diazinon on immunological parameters (relative spleen weight, splenocytes count, lysozyme activity, respiratory burst and IgM concentration) in Nile tilapia. Diazinon at sublethal concentrations (0.39 and 0.78 mg/L) did not alter RSW, splenocytes count or lysozyme activity. However, at the highest concentration tested (1.96 mg/L) diazinon significantly increased respiratory burst and IgM concentration. In summary, diazinon (and perhaps other pesticides) could alter immunological response and induce oxidative stress.


Subject(s)
Cichlids/immunology , Diazinon/toxicity , Immune System/drug effects , Water Pollutants, Chemical/toxicity , Animals , Cell Count , Immunoglobulin M/blood , Muramidase/metabolism , Organ Size/drug effects , Oxidative Stress/drug effects , Respiratory Burst/drug effects , Spleen/cytology , Spleen/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...