Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioimpacts ; 11(4): 263-269, 2021.
Article in English | MEDLINE | ID: mdl-34631488

ABSTRACT

Introduction: A new microfluidic-based method with electrochemical detection was developed for the simultaneous quantification of acetaminophen (AP) and phenylephrine (PHE) pharmaceuticals in the human blood and pharmaceuticals (e.g. tablet and drop). Methods: The separation was achieved on a SU8/glass microchip with a 100 µm Pt working electrode that was positioned out of the channel and 2-(N-morpholino) ethanesulfonic acid was used as a running buffer (pH 7, 10 mM). Home designed modulated high voltage power supply and dual time switcher was used for controlling the injection and separation of the analytes in the unpinched injection mode. Results: The injection was carried out using +750 V for 7 seconds, and the separation and detection voltages were set at +1000 V and +0.9 V, respectively. Critical parameters such as detection potential, buffer concentration, injection, and separation voltage were studied in terms of their effects on the resolution, peak height, and migration times. For each analyte, the correlation coefficients were over 0.99 (n = 6). The developed microchip was able to detect AP and phenylephrine simultaneously with the limit of detection of 7.9 and 5.2 (µg/mL) respectively for PHE and AP and excellent linear range of 10-200 (µg/mL). The recovery of the drugs ranged from 96% to 103%, while the repeatability of the method through inter- and intra-day was lower than 7%. Conclusion: The developed method offers several advantages, including easy sample pretreatment process, simplicity, very fast analysis compared to other typical chromatographic methods. Thus, the proposed microfluidic-based method is proposed to be used as a time- and cost-effective monitoring method for the analysis of AP and PHE.

2.
Sensors (Basel) ; 21(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34372254

ABSTRACT

Ring resonators are well-known optical biosensors thanks to their relatively high Q-factor and sensitivity, in addition to their potential to be fabricated in large arrays with a small footprint. Here, we investigated the characteristics of a polymer ring resonator with a partially tapered waveguide for Biomedical Sensing. The goal is to develop a more sensitive biosensor with an improved figure of merit. The concept is more significant field interaction with the sample under test in tapered segments. Waveguide width is hereby gradually reduced to half. Sensitivity improves from 84.6 to 101.74 [nm/RIU] in a relatively small Q-factor reduction from 4.60 × 103 for a strip waveguide to 4.36 × 103 for a π/4 partially tapered one. After the study, the number of tapered parts from zero to fifteen, the obtained figure of merit improves from 497 for a strip ring to 565 for a π/4 tapered ring close to six tapered ones. Considering the fabrication process, the three-tapered one is suggested. The all-polymer material device provides advantages of a low-cost, disposable biosensor with roll-to-roll fabrication compatibility. This design can also be applied on silicon on isolator, or polymer on silicon-based devices, thereby taking advantage of a higher Q-factor and greater sensitivity.


Subject(s)
Biosensing Techniques , Optical Devices , Polymers , Refractometry , Silicon
3.
Neural Regen Res ; 12(3): 458-463, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28469662

ABSTRACT

Peripheral nerve injuries with a poor prognosis are common. Evening primrose oil (EPO) has beneficial biological effects and immunomodulatory properties. Since electrical activity plays a major role in neural regeneration, the present study investigated the effects of electrical stimulation (ES), combined with evening primrose oil (EPO), on sciatic nerve function after a crush injury in rats. In anesthetized rats, the sciatic nerve was crushed using small haemostatic forceps followed by ES and/or EPO treatment for 4 weeks. Functional recovery of the sciatic nerve was assessed using the sciatic functional index. Histopathological changes of gastrocnemius muscle atrophy were investigated by light microscopy. Electrophysiological changes were assessed by the nerve conduction velocity of sciatic nerves. Immunohistochemistry was used to determine the remyelination of the sciatic nerve following the interventions. EPO + ES, EPO, and ES obviously improved sciatic nerve function assessed by the sciatic functional index and nerve conduction velocity of the sciatic nerve at 28 days after operation. Expression of the peripheral nerve remyelination marker, protein zero (P0), was increased in the treatment groups at 28 days after operation. Muscle atrophy severity was decreased significantly while the nerve conduction velocity was increased significantly in rats with sciatic nerve injury in the injury + EPO + ES group than in the EPO or ES group. Totally speaking, the combined use of EPO and ES may produce an improving effect on the function of sciatic nerves injured by a crush. The increased expression of P0 may have contributed to improving the functional effects of combination therapy with EPO and ES as well as the electrophysiological and histopathological features of the injured peripheral nerve.

4.
J Med Signals Sens ; 7(2): 71-79, 2017.
Article in English | MEDLINE | ID: mdl-28553579

ABSTRACT

Comprehension of the brain function can be helpful for therapy of neurodegenerative diseases. The brain consists of various types of neuron sets, which organize in three-dimensional complex networks and form neural circuits underlying different behaviors. The circuits act based on the patterns that encode the brain functions. Recognition of the neural patterns requires methods to manipulate the neurons. Electrical stimulation may be the most common method. However, it has significant drawbacks including failure to identify specific neurons in experiments. As an alternative, optical stimulation is a new method that acts in combination with genetic approaches. The novel, optogenetic technology makes it feasible to manipulate either the specific cell types or the neural circuits. This is associated with minimum tissue damages as well as side effects. In this study, a new technology has been introduced, and then its optical and genetical tools have been investigated.

5.
Cell J ; 18(2): 205-13, 2016.
Article in English | MEDLINE | ID: mdl-27540525

ABSTRACT

OBJECTIVE: In conventional assisted reproductive technology (ART), oocytes are cultured in static microdrops within Petri dishes that contain vast amounts of media. However, the in vivo environment is dynamic. This study assesses in vitro oocyte maturation through the use of a new microfluidic device. We evaluate oocyte fertilization to the blastocyct stage and their glutathione (GSH) contents in each experimental group. MATERIALS AND METHODS: In this experimental study, we established a dynamic culture condition. Immature oocytes were harvested from ovaries of Naval Medical Research Institute (NMRI) mice. Oocytes were randomly placed in static (passive) and dynamic (active) in vitro maturation (IVM) culture medium for 24 hours. In vitro matured oocytes underwent fertilization, after which we placed the pronucleus (PN) stage embryos in microdrops and followed their developmental stages to blastocyst formation after 3 days. GSH content of the in vitro matured oocytes was assessed by monochlorobimane (MCB) staining. RESULTS: We observed significantly higher percentages of mature metaphase II oocytes (MII) in the passive and active dynamic culture systems (DCS) compared to the static group (P<0.01). There were significantly less mean numbers of germinal vesicle (GV) and degenerated oocytes in the passive and active dynamic groups compared to the static group (P<0.01). Fertilization and blastocyst formation rate in the dynamic systems were statistically significant compared to the static cultures (P<0.01). There was significantly higher GSH content in dynamically matured oocytes compared to statically matured oocytes (P<0.01). CONCLUSION: Dynamic culture for in vitro oocyte maturation improves their developmental competency in comparison with static culture conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...