Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 31(5): 1575-1585, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34338967

ABSTRACT

Excited state interactions of zeolite adsorbed porphyrins have been investigated by steady state luminescence quenching technique with certain antioxidants such as reduced glutathione, ascorbic acid and L-cysteine. The zeolite supported porphyrins, meso-tetra (N-methyl-4-pyridyl) porphyrin (H2TMPyP4+) and zinc tetra(N-methyl-4-pyridyl) porphyrin (ZnTMPyP4+) were prepared and characterized by various techniques such as Diffuse Reflectance Spectra (DRS), Scanning Electron Microscope (SEM), powder X-Ray Diffraction (XRD) and BET surface area. The interaction of zeolites with porphyrins are shown to increase the lifetime of the singlet excited state of porphyrins and decays are biphasic in nature. The splitting of the emission band of porphyrins occurs in 1:1 glycerol: water solution due to the changes in the dielectric of the solvation sphere associated with porphyrin. The Stern-Volmer plots of I0/I vs quencher concentration [Q] were linear in the whole range of [Q] used. These studies revealed the effective quenching for zinc porphyrin compared to free base porphyrin. The effect of quenchers and zeolite acidity has also been studied and the quenching rate constant (kq) is found in the order of 109 M-1 s-1. The quenching reaction obeys Rehm-Weller Equation and is shown to be due to thermodynamically favoured electron transfer from quenchers to the excited singlet state of porphyrins (reductive quenching).

2.
Phys Chem Chem Phys ; 19(4): 3125-3135, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28083594

ABSTRACT

Pyrene derivatives show immense potential as sensitizers for dye-sensitized solar cells (DSCs). Therefore, this work focuses on the impact of π-spacers on the photophysical, electrochemical and photovoltaic properties of pyrene based D-π-A dyes, since the insertion of π-spacers is one of the doable strategies to improve the light harvesting properties of the dye. In this respect, three new pyrene based D-π-A dyes have been synthesized and characterized by 1H, 13C NMR, and elemental analyses and EI-MS spectrometry. The selected π-spacers are benzene, thiophene and furan. Compared with a benzene spacer, the introduction of a heterocyclic ring spacer reduces the band gap of the dye and brings about the broadening of the absorption spectra to the longer wavelength region through intramolecular charge-transfer (ICT). Combined experimental and theoretical studies were performed to investigate the ICT process involved in the pyrene derivatives. The profound solvatochromism with increased nonradiative rate constants (knr) has been construed in terms of ICT from the pyrene core to rhodanine-3-acetic acid via conjugated π-spacers. Electrochemical data also reveal that the HOMO and LUMO energy levels are fine-tuned by incorporating different π-spacers between pyrene and rhodanine-3-acetic acid. On the basis of the optimized DSC test conditions, the best performance was found for PBRA, in which a benzene group is the conjugated π-spacer. The divergence in the photovoltaic behaviors of these dyes was further explicated by femtosecond fluorescence and electrochemical impedance spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...