Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(45): 16514-16518, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34761758

ABSTRACT

A mesoionic N-heterocyclic carbene-gold(I) complex with a unique Au⋯H-C(methine) intramolecular hydrogen bonding interaction has been investigated in the solid state. The structure of this new neutral gold(I)-carbene was characterized by FT-IR and NMR spectroscopy, TGA, and X-ray diffraction techniques. Density functional theory (DFT) and atoms-in-molecule (AIM) analysis revealed that the gold-hydrogen bonding situation is more favored. Besides, the photophysical properties of the gold(I) complex were also investigated.

2.
Chem Asian J ; 16(5): 521-529, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33442961

ABSTRACT

The synthesis and the luminescence features of three gold(I)-N-heterocyclic carbene (NHC) complexes are presented to study how the n-alkyl group can influence the luminescence properties in the crystalline state. The mononuclear gold(I)-NHC complexes, [(L1 )Au(Cl)] (1), [(L2 )Au(Cl)] (2), and [(L3 )Au(Cl)] (3) were isolated from the reactions between [(tht)AuCl] and corresponding NHC ligand precursors, [N-(9-acridinyl)-N'-(n-butyl)-imidazolium chloride, (L1 .HCl)], [N-(9-acridinyl)-N'-(n-pentyl)-imidazolium chloride, (L2 .HCl)] and [N-(9-acridinyl)-N'-(n-hexyl)-imidazolium chloride, (L3 .HCl)]. Their single-crystal X-ray analysis reveals the influence of the n-alkyl groups on solid-state packing. A comparison of the luminescence features of 1-3 with n-alkyl substituents is explored. The molecules 1-3 depicted blue emission in the solution state, while the yellow emission (for 1), greenish-yellow emission (for 2), and blue emission (for 3) in the crystalline phase. This paradigm emission shift arises from n-butyl to n-pentyl and n-hexyl in the crystalline state due to the carbon-carbon rotation of the n-alkyl group, which tends to promote unusual solid packing. Hence n-alkyl group adds a novel emission property in the crystalline state. Density Functional Theory and Time-Dependent Density Functional Theory calculations were carried out for monomeric complex, N-(9-acridinyl)-N'-(n-heptyl)imidazole-2-ylidene gold(I) chloride and dimeric complex, N-(9-acridinyl)-N'-(n-heptyl)imidazole-2-ylidene gold(I) chloride to understand the structural and electronic properties.

3.
Dalton Trans ; 49(47): 17331-17340, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33206066

ABSTRACT

Novel antimony(iii) imidazole selone complexes in a super crowded environment are reported for the first time. The super bulky selone antimony complexes, [{IPr*Se}(SbCl3)2] (1) and [{IPr*Se}(SbBr3)2] (2), were isolated from the reactions between IPr*Se (IPr*Se = [1,3-bis(2,6-diphenylmethylphenyl)imidazole selone]) and suitable antimony(iii) halides. 1 and 2 are dinuclear complexes with a Sb : Se ratio of 1 : 0.5 with an unusual coordination mode of selone. The molecules 1 and 2 consist of both Menshutkin-type Sbπaryl interactions and a Sb-Se coordination bond. However, the reaction between antimony(iii) halides and [(IPaul)Se] ([(IPaul)Se] = [1,3-bis(2,4-methyl-6-diphenyl phenyl)imidazole selone]) with a spatially defined steric impact gave the dinuclear complex [{(IPaul)Se}(SbCl3)]2 (3) and the mononuclear complex [{(IPaul)Se}(SbBr3)] (4) without Menshutkin-type interactions. The Sb : Se ratio in 3 and 4 is 1 : 1. Interestingly, the Menshutkin-type interaction was absent in 3 and 4 due to the efficient coordinating ability of the ligand [(IPaul)Se] with the Sb(iii) center compared to that of the super bulky ligand IPr*Se. The thermal property of these antimony selone complexes was also investigated. Density functional theory (DFT) calculations were carried out on the model systems [L(SbCl3)2] (1A), [L(SbCl3)] (1B), [L'(SbCl3)2] (1C), and [L'(SbCl3)] (1D), where L = [1,3-bis(2,6-diisopropyl-4-methyl phenyl)imidazole selone] and L' = [1,3-bis(phenyl)imidazole selone], to understand the nature of orbitals and bonding situations. The computed metrical parameters of 1A are in good agreement with the experimental values. Natural population analysis of the model system reveals that the natural charge and total population of antimony(iii) are comparable. The unequal interaction between selenium and antimony obtained using Wiberg bond indices (WBIs) is fully consistent with the findings of the single-crystal X-ray studies.

4.
RSC Adv ; 9(13): 7543-7550, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-35519949

ABSTRACT

Herein, the photophysical properties of an acridine derivative of a bis-N-heterocyclic carbene silver complex were investigated. The HOMO and LUMO energy differences between 9-[(N-methyl imidazol-2-ylidene)]acridine and 4,5-bis[(N-methyl-imidazol-2-ylidene)methyl]acridine were theoretically compared. Based on the calculation, the 4,5-bis N-heterocyclic carbene-tethered acridine type of ligand was found to be a potential source for tuning the fluorescent nature of the resultant metal derivatives. Thus, a 4,5-bis N-heterocyclic carbene (NHC)-tethered acridine silver(i) salt was synthesized, and its photophysical properties were investigated. The 4,5-bis[(N-isopropylimidazol-2-ylidene)methyl]acridine silver(i) hexafluorophosphate complex was obtained from the reaction between [4,5-bis{(N-isopropylimidazolium)methyl}acridine] hexafluorophosphate and Ag2O in very good yield; this molecule was characterized by elemental analysis and FTIR, multinuclear (1H and 13C) NMR, UV-Vis, and fluorescence spectroscopic techniques. The molecular structure has been confirmed by single-crystal X-ray diffraction analysis, which has revealed that the complex is a homoleptic mononuclear silver(i) cationic solid. The charge of the Ag(i)-NHC cation is balanced by the hexafluorophosphate anion. The cationic moieties are closely packed in the chair and inverted chair forms where silver(i) possesses a quasi-linear geometry. Moreover, the silver complex provided blue emission from all the three excitations with good fluorescence quantum yield. The fluorescence lifetime of the silver(i) complex has been determined using the time-correlated single photon counting technique. Interestingly, the fluorescence decay pattern and the fluorescence lifetimes of the silver complex are largely different from those of the parent ligand acridine imidazolium salt. Moreover, the theoretical predictions have been found to be in good agreement with the experimental results.

5.
J Org Chem ; 80(24): 11926-31, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26524191

ABSTRACT

Triplet carbenes react with molecular oxygen with rates that approach diffusion control to carbonyl O-oxides, whereas triplet nitrenes react much slower. For investigating the reaction of phenylnitrene with O2, the nitrene was generated by flash vacuum thermolysis (FVT) of phenylazide and subsequently isolated in O2-doped matrices. FVT of the azide produces the nitrene in high yield and with only minor contaminations of the rearranged products that are frequently observed if the nitrene is produced by photolysis. The phenylnitrene was isolated in solid Ar, Xe, mixtures of these rare gases with O2, and even in pure solid O2. At temperatures between 30 and 35 K an extremely slow thermal reaction between the nitrene and O2 was observed, whereas at higher temperatures, solid Ar and O2 rapidly evaporate. Only O2-doped Xe matrices allowed us to anneal at temperatures above 40 K, and at these temperatures, the nitrene reacts with O2 to produce nitroso O-oxide mainly in its syn conformation. Upon visible light irradiation (450 nm), the nitroso oxide rapidly rearranges to nitrobenzene.

SELECTION OF CITATIONS
SEARCH DETAIL
...