Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 98(2): e0178523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38193690

ABSTRACT

The human pathogen herpes simplex virus 1 (HSV-1) produces a lifelong infection in the majority of the world's population. While the generalities of alpha herpesvirus assembly and egress pathways are known, the precise molecular and spatiotemporal details remain unclear. In order to study this aspect of HSV-1 infection, we engineered a recombinant HSV-1 strain expressing a pH-sensitive reporter, gM-pHluorin. Using a variety of fluorescent microscopy modalities, we can detect individual virus particles undergoing intracellular transport and exocytosis at the plasma membrane. We show that particles exit from epithelial cells individually, not bulk release of many particles at once, as has been reported for other viruses. In multiple cell types, HSV-1 particles accumulate over time at the cell periphery and cell-cell contacts. We show that this accumulation effect is the result of individual particles undergoing exocytosis at preferential sites and that these egress sites can contribute to cell-cell spread. We also show that the viral membrane proteins gE, gI, and US9, which have important functions in intracellular transport in neurons, are not required for preferential egress and clustering in non-neuronal cells. Importantly, by comparing HSV-1 to a related alpha herpesvirus, pseudorabies virus, we show that this preferential exocytosis and clustering effect are cell type dependent, not virus dependent. This preferential egress and clustering appear to be the result of the arrangement of the microtubule cytoskeleton, as virus particles co-accumulate at the same cell protrusions as an exogenous plus end-directed kinesin motor.IMPORTANCEAlpha herpesviruses produce lifelong infections in their human and animal hosts. The majority of people in the world are infected with herpes simplex virus 1 (HSV-1), which typically causes recurrent oral or genital lesions. However, HSV-1 can also spread to the central nervous system, causing severe encephalitis, and might also contribute to the development of neurodegenerative diseases. Many of the steps of how these viruses infect and replicate inside host cells are known in depth, but the final step, exiting from the infected cell, is not fully understood. In this study, we engineered a novel variant of HSV-1 that allows us to visualize how individual virus particles exit from infected cells. With this imaging assay, we investigated preferential egress site formation in certain cell types and their contribution to the cell-cell spread of HSV-1.


Subject(s)
Exocytosis , Herpes Simplex , Herpesvirus 1, Human , Virus Release , Animals , Humans , Biological Transport , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Neurons
2.
bioRxiv ; 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-36909512

ABSTRACT

The human pathogen Herpes Simplex Virus 1 (HSV-1) produces a lifelong infection in the majority of the world's population. While the generalities of alpha herpesvirus assembly and egress pathways are known, the precise molecular and spatiotemporal details remain unclear. In order to study this aspect of HSV-1 infection, we engineered a recombinant HSV-1 strain expressing a pH-sensitive reporter, gM-pHluorin. Using a variety of fluorescent microscopy modalities, we can detect individual virus particles undergoing intracellular transport and exocytosis at the plasma membrane. We show that particles exit from epithelial cells individually, not bulk release of many particles at once, as has been reported for other viruses. In multiple cell types, HSV-1 particles accumulate over time at the cell periphery and cell-cell contacts. We show that this accumulation effect is the result of individual particles undergoing exocytosis at preferential sites and that these egress sites can contribute to cell-cell spread. We also show that the viral membrane proteins gE, gI, and US9, which have important functions in intracellular transport in neurons, are not required for preferential egress and clustering in non-neuronal cells. Importantly, by comparing HSV-1 to a related alpha herpesvirus, pseudorabies virus, we show that this preferential exocytosis and clustering effect is cell type-dependent, not virus dependent. This preferential egress and clustering appears to be the result of the arrangement of the microtubule cytoskeleton, as virus particles co-accumulate at the same cell protrusions as an exogenous plus end-directed kinesin motor.

3.
bioRxiv ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38168379

ABSTRACT

Herpes Simplex Virus 1 (HSV-1) is an alpha herpesvirus that infects a majority of the world population. The mechanisms and cellular host factors involved in the intracellular transport and exocytosis of HSV-1 particles are not fully understood. To elucidate these late steps in the replication cycle, we developed a live-cell fluorescence microscopy assay of HSV-1 virion intracellular trafficking and exocytosis. This method allows us to track individual virus particles, and identify the precise moment and location of particle exocytosis using a pH-sensitive reporter. We show that HSV-1 uses the host Rab6 post-Golgi secretory pathway during egress. The small GTPase, Rab6, binds to nascent secretory vesicles at the trans-Golgi network and regulates vesicle trafficking and exocytosis at the plasma membrane. HSV-1 particles colocalize with Rab6a in the region of the Golgi, cotraffic with Rab6a to the cell periphery, and undergo exocytosis from Rab6a vesicles. Consistent with previous reports, we find that HSV-1 particles accumulate at preferential egress sites in infected cells. The Rab6a secretory pathway mediates this preferential/polarized egress, since Rab6a vesicles accumulate near the plasma membrane similarly in uninfected cells. These data suggest that, following particle envelopment, HSV-1 egress follows a pre-existing cellular secretory pathway to exit infected cells rather than novel, virus-induced mechanisms.

4.
CBE Life Sci Educ ; 20(3): ar47, 2021 09.
Article in English | MEDLINE | ID: mdl-34460291

ABSTRACT

Undergraduate research is one of the most valuable activities an undergraduate can engage in because of its benefits, and studies have shown that longer experiences are more beneficial. However, prior research has illuminated that undergraduates encounter challenges that may cause them to exit research prematurely. These studies have been almost exclusively conducted at research-intensive (R1) institutions, and it is unclear whether such challenges are generalizable to other institution types. To address this, we extended a study previously conducted at public R1 institutions. In the current study, we analyze data from 1262 students across 25 public R1s, 12 private R1s, 30 master's-granting institutions, and 20 primarily undergraduate institutions (PUIs) to assess 1) to what extent institution type predicts students' decisions to persist in undergraduate research and 2) what factors affect students' decisions to either stay in or consider leaving their undergraduate research experiences (UREs) at different institution types. We found students at public R1s are more likely to leave their UREs compared with students at master's-granting institutions and PUIs. However, there are few differences in why students enrolled at different institution types consider leaving or choose to stay in their UREs. This work highlights the importance of studying undergraduate research across institutions.


Subject(s)
Biological Science Disciplines , Students , Humans
5.
PLoS One ; 14(8): e0220186, 2019.
Article in English | MEDLINE | ID: mdl-31412071

ABSTRACT

Undergraduate research experiences (UREs) have the potential to benefit undergraduates and longer UREs have been shown to lead to greater benefits for students. However, no studies have examined what causes students to stay in or consider leaving their UREs. In this study, we examined what factors cause students to stay in their UREs, what factors cause students to consider leaving their UREs, and what factors cause students to leave their UREs. We sampled from 25 research-intensive (R1) public universities across the United States and surveyed 768 life sciences undergraduates who were currently participating in or had previously participated in a URE. Students answered closed-ended and open-ended questions about factors that they perceived influenced their persistence in UREs. We used logistic regression to explore to what extent student demographics predicted what factors influenced students to stay in or consider leaving their UREs. We applied open-coding methods to probe the student-reported reasons why students chose to stay in and leave their UREs. Fifty percent of survey respondents considered leaving their URE, and 53.1% of those students actually left their URE. Students who reported having a positive lab environment and students who indicated enjoying their everyday research tasks were more likely to not consider leaving their UREs. In contrast, students who reported a negative lab environment or that they were not gaining important knowledge or skills were more likely to leave their UREs. Further, we identified that gender, race/ethnicity, college generation status, and GPA predicted which factors influenced students' decisions to persist in their UREs. This research provides important insight into how research mentors can create UREs that undergraduates are willing and able to participate in for as long as possible.


Subject(s)
Biological Science Disciplines/education , Career Choice , Research/education , Students/psychology , Female , Humans , Male , Surveys and Questionnaires , Universities
SELECTION OF CITATIONS
SEARCH DETAIL
...