Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 8(1): 111, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33931626

ABSTRACT

Soil-borne plant pathogens represent a serious threat that undermines commercial walnut (Juglans regia) production worldwide. Crown gall, caused by Agrobacterium tumefaciens, and Phytophthora root and crown rots, caused by various Phytophthora spp., are among the most devastating walnut soil-borne diseases. A recognized strategy to combat soil-borne diseases is adoption of resistant rootstocks. Here, resistance to A. tumefaciens, P. cinnamomi, and P. pini is mapped in the genome of Juglans microcarpa, a North American wild relative of cultivated walnut. Half-sib J. microcarpa mother trees DJUG 31.01 and DJUG 31.09 were crossed with J. regia cv. Serr, producing 353 and 400 hybrids, respectively. Clonally propagated hybrids were genotyped by sequencing to construct genetic maps for the two populations and challenged with the three pathogens. Resistance to each of the three pathogens was mapped as a major QTL on the long arm of J. microcarpa chromosome 4D and was associated with the same haplotype, designated as haplotype b, raising the possibility that the two mother trees were heterozygous for a single Mendelian gene conferring resistance to all three pathogens. The deployment of this haplotype in rootstock breeding will facilitate breeding of a walnut rootstock resistant to both crown gall and Phytophthora root and crown rots.

2.
BMC Plant Biol ; 18(1): 137, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29945553

ABSTRACT

BACKGROUND: The mountainous region between the Caucasus and China is considered to be the center of domestication for grapevine. Despite the importance of Central Asia in the history of grape growing, information about the extent and distribution of grape genetic variation in this region is limited in comparison to wild and cultivated grapevines from around the Mediterranean basin. The principal goal of this work was to survey the genetic diversity and relationships among wild and cultivated grape germplasm from the Caucasus, Central Asia, and the Mediterranean basin collectively to understand gene flow, possible domestication events and adaptive introgression. RESULTS: A total of 1378 wild and cultivated grapevines collected around the Mediterranean basin and from Central Asia were tested with a set of 20 nuclear SSR markers. Genetic data were analyzed (Cluster analysis, Principal Coordinate Analysis and STRUCTURE) to identify groups, and the results were validated by Nei's genetic distance, pairwise FST analysis and assignment tests. All of these analyses identified three genetic groups: G1, wild accessions from Croatia, France, Italy and Spain; G2, wild accessions from Armenia, Azerbaijan and Georgia; and G3, cultivars from Spain, France, Italy, Georgia, Iran, Pakistan and Turkmenistan, which included a small group of wild accessions from Georgia and Croatia. Wild accessions from Georgia clustered with cultivated grape from the same area (proles pontica), but also with Western Europe (proles occidentalis), supporting Georgia as the ancient center of grapevine domestication. In addition, cluster analysis indicated that Western European wild grapes grouped with cultivated grapes from the same area, suggesting that the cultivated proles occidentalis contributed more to the early development of wine grapes than the wild vines from Eastern Europe. CONCLUSIONS: The analysis of genetic relationships among the tested genotypes provided evidence of genetic relationships between wild and cultivated accessions in the Mediterranean basin and Central Asia. The genetic structure indicated a considerable amount of gene flow, which limited the differentiation between the two subspecies. The results also indicated that grapes with mixed ancestry occur in the regions where wild grapevines were domesticated.


Subject(s)
Vitis/genetics , Asia, Central , Crops, Agricultural/genetics , DNA, Plant/genetics , Flowers/anatomy & histology , Genetic Variation/genetics , Mediterranean Region , Phenotype , Vitis/anatomy & histology
3.
PLoS One ; 12(10): e0185974, 2017.
Article in English | MEDLINE | ID: mdl-29023476

ABSTRACT

The distribution and survival of trees during the last glacial maximum (LGM) has been of interest to paleoecologists, biogeographers, and geneticists. Ecological niche models that associate species occurrence and abundance with climatic variables are widely used to gain ecological and evolutionary insights and to predict species distributions over space and time. The present study deals with the glacial history of walnut to address questions related to past distributions through genetic analysis and ecological modeling of the present, LGM and Last Interglacial (LIG) periods. A maximum entropy method was used to project the current walnut distribution model on to the LGM (21-18 kyr BP) and LIG (130-116 kyr BP) climatic conditions. Model tuning identified the walnut data set filtered at 10 km spatial resolution as the best for modeling the current distribution and to hindcast past (LGM and LIG) distributions of walnut. The current distribution model predicted southern Caucasus, parts of West and Central Asia extending into South Asia encompassing northern Afghanistan, Pakistan, northwestern Himalayan region, and southwestern Tibet, as the favorable climatic niche matching the modern distribution of walnut. The hindcast of distributions suggested the occurrence of walnut during LGM was somewhat limited to southern latitudes from southern Caucasus, Central and South Asian regions extending into southwestern Tibet, northeastern India, Himalayan region of Sikkim and Bhutan, and southeastern China. Both CCSM and MIROC projections overlapped, except that MIROC projected a significant presence of walnut in the Balkan Peninsula during the LGM. In contrast, genetic analysis of the current walnut distribution suggested a much narrower area in northern Pakistan and the surrounding areas of Afghanistan, northwestern India, and southern Tajikistan as a plausible hotspot of diversity where walnut may have survived glaciations. Overall, the findings suggest that walnut perhaps survived the last glaciations in several refugia across a wide geographic area between 30° and 45° North latitude. However, humans probably played a significant role in the recent history and modern distribution of walnut.


Subject(s)
Genetic Variation , Juglans/genetics , Models, Genetic , Asia , Ecology , Genetics, Population , Juglans/physiology , Microsatellite Repeats , Phylogeography , Polymorphism, Genetic , Refugium
4.
Front Plant Sci ; 8: 476, 2017.
Article in English | MEDLINE | ID: mdl-28443103

ABSTRACT

Marker-assisted selection (MAS) in stone fruit (Prunus species) breeding is currently difficult to achieve due to the polygenic nature of the most relevant agronomic traits linked to fruit quality. Genotyping by sequencing (GBS), however, provides a large quantity of useful data suitable for fine mapping using Single Nucleotide Polymorphisms (SNPs) from a reference genome. In this study, GBS was used to genotype 272 seedlings of three F1 Japanese plum (Prunus salicina Lindl) progenies derived from crossing "98-99" (as a common female parent) with "Angeleno," "September King," and "September Queen" as male parents. Raw sequences were aligned to the Peach genome v1, and 42,909 filtered SNPs were obtained after sequence alignment. In addition, 153 seedlings from the "98-99" × "Angeleno" cross were used to develop a genetic map for each parent. A total of 981 SNPs were mapped (479 for "98-99" and 502 for "Angeleno"), covering a genetic distance of 688.8 and 647.03 cM, respectively. Fifty five seedlings from this progeny were phenotyped for different fruit quality traits including ripening time, fruit weight, fruit shape, chlorophyll index, skin color, flesh color, over color, firmness, and soluble solids content in the years 2015 and 2016. Linkage-based QTL analysis allowed the identification of genomic regions significantly associated with ripening time (LG4 of both parents and both phenotyping years), fruit skin color (LG3 and LG4 of both parents and both years), chlorophyll degradation index (LG3 of both parents in 2015) and fruit weight (LG7 of both parents in 2016). These results represent a promising situation for GBS in the identification of SNP variants associated to fruit quality traits, potentially applicable in breeding programs through MAS, in a highly heterozygous crop species such as Japanese plum.

5.
G3 (Bethesda) ; 6(12): 3985-3993, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27707802

ABSTRACT

The domesticated almond [Prunus dulcis (L.) Batsch] and peach [P. persica (Mill.) D. A. Webb] originated on opposite sides of Asia and were independently domesticated ∼5000 yr ago. While interfertile, they possess alternate mating systems and differ in a number of morphological and physiological traits. Here, we evaluated patterns of genome-wide diversity in both almond and peach to better understand the impacts of mating system, adaptation, and domestication on the evolution of these taxa. Almond has around seven times the genetic diversity of peach, and high genome-wide [Formula: see text] values support their status as separate species. We estimated a divergence time of ∼8 MYA (million years ago), coinciding with an active period of uplift in the northeast Tibetan Plateau and subsequent Asian climate change. We see no evidence of a bottleneck during domestication of either species, but identify a number of regions showing signatures of selection during domestication and a significant overlap in candidate regions between peach and almond. While we expected gene expression in fruit to overlap with candidate selected regions, instead we find enrichment for loci highly differentiated between the species, consistent with recent fossil evidence suggesting fruit divergence long preceded domestication. Taken together, this study tells us how closely related tree species evolve and are domesticated, the impact of these events on their genomes, and the utility of genomic information for long-lived species. Further exploration of this data will contribute to the genetic knowledge of these species and provide information regarding targets of selection for breeding application, and further the understanding of evolution in these species.


Subject(s)
Domestication , Evolution, Molecular , Genome, Plant , Genomics , Prunus dulcis/genetics , Prunus persica/genetics , Genes, Plant , Genetic Association Studies , Genetic Variation , Genetics, Population , Genomics/methods , Inbreeding , Mutation , Quantitative Trait Loci
6.
BMC Genomics ; 17: 478, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27357509

ABSTRACT

BACKGROUND: Grapes are one of the world's most valuable crops and most are made into wine. Grapes belong to the genus Vitis, which includes over 60 inter-fertile species. The most common grape cultivars derive their entire ancestry from the species Vitis vinifera, but wild relatives have also been exploited to create hybrid cultivars, often with increased disease resistance. RESULTS: We evaluate the genetic ancestry of some of the most widely grown commercial hybrids from North America and Europe. Using genotyping-by-sequencing (GBS), we generated 2482 SNPs and 56 indels from 7 wild Vitis, 7 V. vinifera, and 64 hybrid cultivars. We used a principal component analysis (PCA) based ancestry estimation procedure and verified its accuracy with both empirical and simulated data. V. vinifera ancestry ranged from 11 % to 76 % across hybrids studied. Approximately one third (22/64) of the hybrids have ancestry estimates consistent with F1 hybridization: they derive half of their ancestry from wild Vitis and half from V. vinifera. CONCLUSIONS: Our results suggest that hybrid grape breeding is in its infancy. The distribution of V. vinifera ancestry across hybrids also suggests that backcrosses to wild Vitis species have been more frequent than backcrosses to V. vinifera during hybrid grape breeding. This pattern is unusual in crop breeding, as it is most common to repeatedly backcross to elite, or domesticated, germplasm. We anticipate our method can be extended to facilitate marker-assisted selection in order to introgress beneficial wild Vitis traits, while allowing for offspring with the highest V. vinifera content to be selected at the seedling stage.


Subject(s)
Breeding , Genome, Plant , Genomics , Vitis/genetics , Crops, Agricultural , Genomics/methods , Genotype , Hybridization, Genetic
7.
Genetica ; 138(6): 681-94, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20217187

ABSTRACT

One hundred ninety-four germplasm accessions of fig representing the four fig types, Common, Smyrna, San Pedro, and Caprifig were analyzed for genetic diversity, structure, and differentiation using genetic polymorphism at 15 microsatellite loci. The collection showed considerable polymorphism with observed number of alleles per locus ranging from four for five different loci, MFC4, LMFC14, LMFC22, LMFC31 and LMFC35 to nine for LMFC30 with an average of 4.9 alleles per locus. Seven of the 15 loci included in the genetic structure analyses exhibited significant deviation from panmixia, of which two showed excess and five showed deficiency of heterozygote. The cluster analysis (CA) revealed ten groups with 32 instances of synonymy among cultivars and groups differed significantly for frequency and composition of alleles for different loci. The principal components analysis (PCA) confirmed the results of CA with some groups more differentiated than the others. Further, the model based Bayesian approach clustering suggested a subtle population structure with mixed ancestry for most figs. The gene diversity analysis indicated that much of the total variation is found within groups (H (G) /H (T) = 0.853; 85.3%) and the among groups within total component (G (GT) = 0.147) accounted for the remaining 14.7%, of which approximately 64% accounted for among groups within clusters (G (GC) = 0.094) and approximately 36% among clusters (G (CT) = 0.053). The analysis of molecular variance (AMOVA) showed approximately similar results with nearly 87% of variation within groups and approximately 10% among groups within clusters, and approximately 3% among clusters. Overall, the gene pool of cultivated fig analyzed possesses substantial genetic polymorphism but exhibits narrow differentiation. It is evident that fig accessions from Turkmenistan are somewhat genetically different from the rest of the Mediterranean and the Caucasus figs. The long history of domestication and cultivation with widespread dispersal of cultivars with many synonyms has resulted in a great deal of confusion in the identification and classification of cultivars in fig.


Subject(s)
Ficus/genetics , Genetic Variation , Alleles , Ficus/classification , Genes, Plant , Microsatellite Repeats , Phylogeny , Population Dynamics
8.
J Hered ; 99(3): 283-91, 2008.
Article in English | MEDLINE | ID: mdl-18316323

ABSTRACT

Determinacy and photoperiod insensitivity are agronomically important traits, selected during or after domestication in common bean. Determinacy reduces aboveground plant biomass and accelerates and synchronizes flowering. Photoperiod insensitivity allows common bean to be grown at higher latitudes under long days. In this study, we attempted to identify Phaseolus vulgaris homologues of 12 Arabidopsis genes that are involved in meristem identity determination and the photoperiod-dependent and autonomous flowering pathways. Amplification products with homology to the original Arabidopsis gene were obtained for 8 genes, 7 of which could be mapped onto the common bean-linkage map using the BAT93 x Jalo EEP 558 and Midas x G12873 recombinant inbred populations. Three Terminal Flower 1 homologues (PvTFL1x, PvTFL1y, and PvTFL1z) were mapped to B4, B1, and B7, respectively. PvTFL1y cosegregated with the determinacy locus, fin. In addition, PvTFL1z mapped near or at a second determinacy locus on B7. A Zeitlupe homologue mapped near a quantitative trait locus (QTL) for flowering time on linkage group B9. Constans, FCA, Flowering locus D, Gigantea, and Leafy homologues did not cosegregate with currently mapped flowering time QTLs and photoperiod insensitivity loci in common bean. Further studies are needed to confirm the role of these homologues as potential candidate genes.


Subject(s)
Chromosome Mapping , Genes, Plant/physiology , Phaseolus/genetics , Phaseolus/physiology , Photoperiod , Plant Proteins/genetics , Sequence Homology , DNA, Plant/chemistry , Flowers/physiology , Polymerase Chain Reaction , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...