Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 451: 139396, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670027

ABSTRACT

In the coffee industry, the use of natural coffee extracts with differentiated attributes is desirable to drive new product development. This study evaluates the impact of ultrafiltration membrane processing on the sensory, metabolic, and physicochemical attributes of four commercially available coffee extracts: cold brew, lightly roasted, freeze concentrated and evaporated standard. The sensory analysis revealed an increase in acidity in the permeate across all extracts, with the most significant profile changes observed in the lightly roasted evaporated and evaporated extracts, accompanied by an enhancement of fruity and floral attributes. Furthermore, the permeate showed reduced total dissolved solids, while the caffeine concentration increased. Metabolomic analysis highlighted key coffee-related metabolites like cinnamic and coumaric acids, explaining observed variations due to their passage through the membrane. Our findings emphasize the potential of permeate as a coffee-based ingredient for ready-to-drink products development, providing a unique coffee experience with organoleptic profiles distinct from traditional beverages.


Subject(s)
Coffea , Coffee , Plant Extracts , Taste , Ultrafiltration , Plant Extracts/chemistry , Coffee/chemistry , Coffea/chemistry , Humans , Food Handling , Caffeine/analysis , Caffeine/metabolism
2.
Foods ; 11(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35159623

ABSTRACT

In this study, we aimed to apply an untargeted LC/QTOF-MS analysis for the identification of compounds that positively and negatively affect the acceptance of coffee beverages from liquid coffee concentrates (CLCs) before and after storage. The metabolomic results were integrated with physicochemical and sensory parameters, such as color, pH, titratable acidity, and oxygen contents, by a bootstrapped version of partial least squares discriminant analysis (PLS-DA) to select and classify the most relevant variables regarding the rejection or acceptance of CLC beverages. The OPLS-DA models for metabolite selection discriminated between the percent sensory acceptance (the Accepted group) and rejection (the Rejected group). Eighty-two molecular features were considered statistically significant. Our data suggest that coffee sample rejection is associated with chlorogenic acid hydrolysis to produce ferulic and quinic acids, consequently generating methoxybenzaldehydes that impact the perceived acidity and aroma. Furthermore, acceptance was correlated with higher global scores and sweetness, as with lactones such as feruloyl-quinolactone, caffeoyl quinolactone, and 4-caffeoyl-1,5-quinolactone, and significant oxygen levels in the headspace.

3.
Molecules ; 26(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200707

ABSTRACT

Concentrated liquid coffees (CLCs) refer to stored extracts stable at environmental temperature, used as ingredients in the retail market. Their low chemical stability affects the sensory profile. This study was performed in two CLCs, one without additives (BIB) and another with a mix of sodium benzoate and potassium sorbate additives (SD), stored at 25 °C for one year. Quantitative-Descriptive (QDA) and discriminant analyses permitted identifying the critical sensory attributes and their evolution over time. The concentrate without additives presented an acceptance limit of 196 days (evaluated at a 50% acceptance ratio), while the additives increased the shelf life up to 226 days (38.9% improvement). The rejection was related to a decreased aroma, increased acidity, and reduced bitterness. A bootstrapped feature selection version of Partial Least Square analysis further demonstrated that reactions of 5-caffeoylquinic acid (5CQA) and 3,5-dicaffeoylquinic acid (3,5diCQA) could cause changes in the aroma at the first degradation stage. In the following stages, changes in fructose and stearic acid contents, a key indicator of acceptance for both extracts possibly related to non-enzymatic reactions involving fructose and other compounds, might affect the bitterness and acidity. These results provided valuable information to understand flavor degradation in CLCs.


Subject(s)
Coffee/chemistry , Flavoring Agents/chemistry , Fructose/chemistry , Least-Squares Analysis , Odorants , Sodium Benzoate/chemistry , Sorbic Acid/chemistry , Stearic Acids/chemistry , Taste/drug effects , Temperature
4.
Food Res Int ; 141: 110141, 2021 03.
Article in English | MEDLINE | ID: mdl-33642008

ABSTRACT

This study evaluated the effects of different roasting profiles (time/temperature) and brewing methods on the physicochemical and sensory characteristics of coffee brews. Cold brewing (dripping and immersion) and hot brewing (French press) methods were studied to understand the effects of water temperature and technical brewing method conditions on the chemical compound extraction in coffees roasted at high-temperature short time (HTST) and low-temperature long time (LTLT). The results showed that coffee beverages were clearly differentiated concerning the roasting profile when hot water was used (90 ± 3 °C) in brewing. Separation of beverages according to the water temperature used in brewing was observed. Notably, hot brewing coffees were distinguished from cold brewing (19 ± 2 °C) based on a higher titratable acidity and abundance of some furan compounds. The non-volatile extraction rate increased at higher brewing temperatures. At the same brewing temperature, dripping exhibited a higher extraction rate than immersion brewing, which suggests that the coffee extraction process is affected by the design and operation of the cold brewing system. Coffee beverages brewed with HTST and cold dripping displayed the highest value in total dissolved solids (TDS), extraction yield, as well as the highest caffeine, trigonelline, 4- and 5-caffeoylquinic acids (CQAs) contents. Regardless of the roasting profile, coffees brewed by cold dripping were perceived with more bitter and roasted flavors. In contrast, cold immersion and hot coffee beverages showed remarkable sweetness, nutty, caramel, and malt attributes. In turn, these attributes showed an inverse correlation with caffeine concentration, trigonelline, CQAs, and TDS. The findings of this study demonstrate that volatile and non-volatile compounds present in roasted coffee depend on time-temperature roasting conditions; in turn, their presence in the resulting beverages are related to the extraction of the operational conditions of coffee brewing methods.


Subject(s)
Coffea , Coffee , Caffeine/analysis , Hot Temperature , Taste
5.
Food Chem ; 274: 137-145, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30372918

ABSTRACT

Immature coffee cherries produce roast coffees with lower hedonic scores than those produced from mature cherries, but variation in volatile and sensory characteristics over a range of maturities is not well studied. In this work, cherries from two coffee cultivars (Caturra, Catimor) were sorted into seven maturity stages from fully immature (Stage 1, green) to fully overripe (Stage 7, purple). Volatile profiles of Stage 1 roast coffee had lower concentrations of carbohydrate degradation products and higher concentrations of N-heterocycles and phenols. Differences in volatiles among Stage 2 (partially immature, yellow-green) and subsequent stages were insignificant (p > 0.05) or else minor. Principle component analysis of the volatile data set also distinguished Stage 1 from other stages. Similarly, a trained cupping panel reported significantly lower sensory scores for Stage 1 as compared to Stages 2-7, but few differences among Stages 2-7. Thus, partially mature and overripe cherries may be appropriate for specialty coffee.


Subject(s)
Coffea/growth & development , Coffee/chemistry , Food-Processing Industry/methods , Taste , Volatile Organic Compounds/analysis , Coffea/chemistry , Humans , Phenols/analysis
6.
Am J Transl Res ; 9(6): 3120-3137, 2017.
Article in English | MEDLINE | ID: mdl-28670398

ABSTRACT

In mammals, proliferative capacity of cardiomyocytes is lost soon after birth, while zebrafish and other lower organisms like newts are known to regenerate injured hearts even at an adult age. Here, we show that miR-1825 can induce robust proliferation of adult rat cardiomyocytes and can improve cardiac function in-vivo post myocardial infarction. Rat adult cardiomyocytes transfected with miR-1825 showed a significant increase in DNA synthesis, mitosis, cytokinesis, and an increase in cell number when compared to cel-miR-67 transfected control. We also observed a reduction in mitochondrial number and a decrease in ROS and DNA-damage. RNA-sequencing data identified NDUFA10, a key gene involved in the mitochondrial electron transport chain to be a direct target of miR-1825. SiRNA mediated silencing of NDUFA10 showed a significant increase in cardiomyocyte proliferation indicating its role downstream of miRNA-1825. In addition, microRNA microarray results identified miR-1825 to regulate expression of a known proliferation inducing miRNA, miR-199a. We also identified the direct targets of miR-199a, namely p16, Rb1, and Meis2 to be downregulated following miR-1825 transfection. However, miR-199a alone did not have similar proliferation inducing effects as miR-1825, indicating that miR-1825 works through multiple pathways and is a master regulator of cardiomyocyte proliferation. In addition, our in-vivo analysis in animal models of LAD ligation and intra-cardiac miRNA delivery showed proliferation of endogenous cardiomyocytes in the peri-infarcted region and an improvement in heart function. These findings establish miR-1825 as a potential therapeutic agent for induction of cardiomyocyte proliferation and cardiac regeneration, with a significant translational potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...