Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Gerontol ; 157: 111625, 2022 01.
Article in English | MEDLINE | ID: mdl-34780930

ABSTRACT

AIM: Aging is associated with poor ability to adapt to stress and abnormal nerve growth factor (NGF) profile. Lower urinary tract symptoms frequently disturb the quality of life of the aging population with no optimal treatment for both genders. The aim of the study was to compare the bladder response to bladder outflow obstruction in young and old LOU rats, a model of healthy aging that does not develop insulin resistance, and its relation to proNGF/NGF imbalance. METHODS: 6- and 36-month-old female LOU rats were subjected to partial bladder urethral obstruction (PUO) for 2 weeks. Morphometric parameters (body and bladder weight) and glycemia were evaluated. Cystometry was carried out to measure functional parameters followed by ex vivo assessment of muscle strip contractile characteristics. Tissue proteins were examined by immunoblotting and morphology was examined by microscopy. RESULTS: Body weight and glycaemia were not affected by surgery. PUO increases significantly bladder weight with increased thickness and fibrosis of the bladder wall as revealed by histological examination in both age groups. Cystometry showed that old PUO rats had a significant reduction in the intercontraction interval and the bladder capacity, a pattern opposite to young rats with PUO. Contractile properties of bladder strip were not affected by age or PUO. On the molecular level, the old rats had lower abundance of the mature NGF relative to proNGF, with signs of p75NTR activation suggested by the higher expression of TNF-α and JNK phosphorylation in the bladder tissue. CONCLUSION: Bladder adaptation to PUO occurs only in young LOU rats to maintain efficient bladder contractility. Old LOU rats display proNGF/NGF imbalance and the associated p75NTR activation. This can further induce tissue damage and degeneration through activation of JNK pathway and release of TNF-α which in turn interferes with the necessary bladder adaptation.


Subject(s)
Healthy Aging , Nerve Growth Factor , Signal Transduction , Urethral Obstruction , Animals , Female , Quality of Life , Rats , Urethral Obstruction/metabolism , Urethral Obstruction/pathology , Urinary Bladder
2.
Neurourol Urodyn ; 40(1): 120-130, 2021 01.
Article in English | MEDLINE | ID: mdl-33098175

ABSTRACT

AIM: Succinate activates the receptor GPR91 identified in the bladder. The present study aims to unravel the mechanisms of bladder relaxation by succinate and how the receptor is involved in structural and functional changes of the bladder. METHODS: Physiological recordings of bladder function were carried out by cystometry and organ bath from C57BL/6 mice, homozygous GPR91-/- mice, and Sprague-Dawley (SD) rats. GPR91 expression was confirmed by polymerase chain reaction and tissue morphology was examined by light (Masson trichrome) and fluorescence microscopy. Nitric oxide (NO) and ATP secretion were measured. RESULTS: Bladders of GPR91 KO mice had a greater mass to body weight ratio with a thicker bladder wall compared to C57BL/6 mice. They also displayed increased basal and maximal bladder pressures, and decreased intercontraction intervals, bladder capacity, micturition volume, and compliance. During cystometry, bladders of SD rats and C57BL/6 mice instilled with succinate (10 mM) showed signs of relaxation while bladders of GPR91 KO mice were unresponsive. Similarly, in organ bath, succinate relaxed bladder strips preincubated with carbachol, except GPR91 KO ones. Relaxation was stronger in the presence of urothelium and independent of NO synthesis. Bladder strips from all mice groups showed similar responses to KCl, carbachol, and electrical stimulation. In vitro, succinate increased NO secretion in urothelial cell culture of both C57BL6 and GPR91 KO mice while ATP secretion was potently decreased by succinate in C57BL6 culture only. CONCLUSION: Succinate through GPR91 is essential to bladder structure and contraction. GPR91 relaxes the detrusor partially by decreasing urothelial ATP secretion.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Succinic Acid/therapeutic use , Urinary Bladder Diseases/drug therapy , Urination/drug effects , Animals , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Succinic Acid/pharmacology
3.
Diabetologia ; 63(9): 1932-1946, 2020 09.
Article in English | MEDLINE | ID: mdl-32699962

ABSTRACT

AIMS/HYPOTHESIS: Although 80% of diabetic patients will suffer from voiding difficulties and urinary symptoms, defined as diabetic voiding dysfunction (DVD), therapeutic targets and treatment options are limited. We hypothesise that the blockade of the pro-nerve growth factor (NGF)/p75 neurotrophin receptor (p75NTR) axis by an anti-proNGF monoclonal antibody or by a small molecule p75NTR antagonist (THX-B) can restore bladder remodelling (represented by bladder weight) in an animal model of DVD. Secondary outcomes of the study include improvements in bladder compliance, contractility and morphology, as well as in voiding behaviour, proNGF/NGF balance and TNF-α expression. METHODS: In a streptozotocin-induced mouse model of diabetes, diabetic mice received either a blocking anti-proNGF monoclonal antibody or a p75NTR antagonist small molecule as weekly systemic injections for 4 weeks. Animals were tested at baseline (at 2 weeks of diabetes induction), and after 2 and 4 weeks of treatment. Outcomes measured were voiding function with voiding spot assays and cystometry. Bladders were assessed by histological, contractility and protein expression assays. RESULTS: Diabetic mice showed features of DVD as early as 2 weeks after diabetes diagnosis (baseline) presented by hypertrophy, reduced contractility and abnormal cystometric parameters. Following treatment initiation, a twofold increase (p < 0.05) in untreated diabetic mouse bladder weight and thickness compared with non-diabetic controls was observed, and this change was reversed by p75NTR antagonism (37% reduction in bladder weight compared with untreated diabetic mice [95% CI 14%, 60%]) after 4 weeks of treatment. However, blocking proNGF did not help to reverse bladder hypertrophy. While diabetic mice had significantly worse cystometric parameters and contractile responses than non-diabetic controls, proNGF antagonism normalised bladder compliance (0.007 [Q1-Q3; 0.006-0.009] vs 0.015 [Q1-Q3; 0.014-0.029] ml/cmH2O in untreated diabetic mice, representing 62% reduction [95% CI 8%, 110%], p < 0.05) and contractility to KCl, carbachol and electrical field stimulation (p < 0.05 compared with the diabetic group) after 2 weeks of treatment. These effects were not observed after 4 weeks of treatment with proNGF antagonist. p75NTR antagonism did not show important improvements in cystometric parameters after 2 weeks of treatment. Slightly improved bladder compliance (0.01 [Q1-Q3; 0.009-0.012] vs 0.013 [Q1-Q3; 0.011-0.016] ml/cmH2O for untreated diabetic mice) was seen in the p75NTR antagonist-treated group after 4 weeks of treatment with significantly stabilised contractile responses to KCl, carbachol and electric field stimulation (p < 0.05 for each) compared with diabetic mice. Bladder dysfunction observed in diabetic mice was associated with a significant increase in bladder proNGF/NGF ratio (3.1 [±1.2] vs 0.26 [±0.04] ng/pg in control group, p < 0.05 at week 2 of treatment) and TNF-α (p < 0.05). The proNGF/NGF ratio was partially reduced (about 60% reduction) with both treatments (1.03 [±0.6] ng/pg for proNGF antibody-treated group and 1.4 [±0.76] ng/pg for p75NTR blocker-treated group after 2 weeks of treatment), concomitant with a significant decrease in the bladder levels of TNF-α (p < 0.05), despite persistent hyperglycaemia. CONCLUSIONS/INTERPRETATION: Our findings indicate that blockade of proNGF and the p75NTR receptor in diabetes can impede the development and progression of DVD. The reported improvements in morphological and functional features in our DVD model validates the proNGF/p75NTR axis as a potential therapeutic target in this pathology. Graphical abstract.


Subject(s)
Diabetes Complications/physiopathology , Diabetes Mellitus, Experimental/physiopathology , Nerve Growth Factor/antagonists & inhibitors , Protein Precursors/antagonists & inhibitors , Receptors, Nerve Growth Factor/antagonists & inhibitors , Urinary Bladder/physiopathology , Urination Disorders/physiopathology , Animals , Antibodies, Monoclonal/pharmacology , Compliance , Diabetes Complications/metabolism , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Mice , Muscle Contraction , Muscle, Smooth/physiopathology , Organ Size , Purines/pharmacology , Receptor, Nerve Growth Factor/antagonists & inhibitors , Urinary Bladder/drug effects , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urination Disorders/metabolism
4.
J Pharmacol Exp Ther ; 367(2): 252-259, 2018 11.
Article in English | MEDLINE | ID: mdl-30104323

ABSTRACT

Succinate, an intermediate metabolite of the Krebs cycle, can alter the metabolomics response to certain drugs and controls an array of molecular responses in the urothelium through activation of its receptor, G-protein coupled receptor 91 (GPR91). Mirabegron, a ß3-adrenergic receptor (ß3-AR) agonist used to treat overactive bladder syndrome (OAB), increases intracellular cAMP in the detrusor smooth muscle cells (SMC), leading to relaxation. We have previously shown that succinate inhibits forskolin-stimulated cAMP production in urothelium. To determine whether succinate interferes with mirabegron-mediated bladder relaxation, we examined their individual and synergistic effect in urothelial-cell and SMC signaling. We first confirmed ß3-AR involvement in the mirabegron response by quantifying receptor abundance by immunoblotting in cultured urothelial cells and SMC and cellular localization by immunohistochemistry in rat bladder tissue. Mirabegron increased cAMP levels in SMC but not in urothelial cells, an increase that was inhibited by succinate, suggesting that it impairs cAMP-mediated bladder relaxation by mirabegron. Succinate and mirabegron increased inducible nitric oxide synthesis and nitric oxide secretion only in urothelial cells, suggesting that its release can indirectly induces SMC relaxation. Succinate exposure decreased the expression of ß3-AR protein in whole bladder in vivo and in SMC in vitro, indicating that this metabolite may lead to impaired pharmacodynamics of the bladder. Together, our results demonstrate that increased levels of succinate in settings of metabolic stress (e.g., the metabolic syndrome) may lead to impaired mirabegron and ß3-AR interaction, inhibition of cAMP production, and ultimately requiring mirabegron dose adjustment for its treatment of OAB related to these conditions.


Subject(s)
Myocytes, Smooth Muscle/metabolism , Receptors, Adrenergic, beta-3/metabolism , Signal Transduction/physiology , Succinic Acid/metabolism , Urothelium/metabolism , Acetanilides/metabolism , Animals , Cyclic AMP/metabolism , Female , Metabolic Syndrome/metabolism , Muscle Relaxation/physiology , Muscle, Smooth/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats , Thiazoles/metabolism , Urinary Bladder/metabolism , Urinary Bladder, Overactive/metabolism
5.
Neurourol Urodyn ; 37(6): 1904-1912, 2018 08.
Article in English | MEDLINE | ID: mdl-29603801

ABSTRACT

AIMS: Polyuria can lead to progressive chronic bladder overdistension. The impact of polyuria on the bladder has been extensively studied in settings of either diabetes or sucrose diuresis in animals. The goal of this study was to investigate the outcomes of polyuria in a hypertension setting. MATERIALS AND METHODS: Male Dahl/SS rats, a hypertension model, received a high-salt or normal diet for 6 weeks. Twenty-four-hour water intake, micturition patterns, and blood pressures were recorded biweekly. Conscious cystometry was carried out at the end of this period. Bladders were collected to measure contractile force and for histological analysis. Paired t-tests were used to compare changes between Week 0 and Week 6 within each group. Unpaired t-tests were used for comparisons between groups for all parameters at Week 6. RESULTS: Six weeks of high-salt diet significantly increased water intake and total urine. Blood pressures and volume of urine per micturition was higher in rats on high-salt diet. Bladder overdistension in the high-salt diet group was confirmed by cystometry, shown by a significantly higher bladder capacity, and compliance. No difference in detrusor contractility was observed between both groups. Collagen content was significantly higher in the lamina propria of the high-salt group compared to the normal group, while the opposite was observed in the muscularis. CONCLUSIONS: Polyuria, in a hypertension context, leads to changes in bladder morphology and function. These findings help clarify the deleterious clinical impact of polyuria on voiding function, highlighting the variable consequences of bladder overdistension according to the underlying pathology.


Subject(s)
Hypertension/complications , Polyuria/etiology , Urinary Bladder Diseases/etiology , Animals , Blood Pressure/drug effects , Compliance , Hypertension/physiopathology , Male , Muscle Contraction , Polyuria/physiopathology , Rats , Rats, Inbred Dahl , Sodium, Dietary , Urinary Bladder/pathology , Urinary Bladder/physiopathology , Urinary Bladder Diseases/complications , Urinary Bladder Diseases/physiopathology , Urination/drug effects
6.
Neurourol Urodyn ; 37(5): 1549-1558, 2018 06.
Article in English | MEDLINE | ID: mdl-29667730

ABSTRACT

AIMS: Succinate and its receptor, GPR91, have been implicated in different aspects of metabolic syndrome. As GPR91 is expressed in the urinary bladder, the aim of this study is to show the effect of chronically increased succinate levels on bladder function. MATERIALS AND METHODS: Healthy Sprague-Dawley (SD) rats and hypertensive Dahl rats received an intraperitoneal injection of either saline or succinate (50 mg/kg) daily for a period of 4 weeks. Conscious cystometry was performed at the end of this period. Bladders were collected and used for contractility studies and morphological assessment. Two-way ANOVA was performed to compare between the two strains and student t-tests to compare treatment groups within each strain. RESULTS: Compared to SD rats, Dahl rats showed signs of bladder dysfunction. Succinate treatment led to higher urinary succinate levels and lower bladder capacities compared to saline-treated animals. In SD rats, this was associated with higher collagen content, lower GPR91 expression and an altered bladder nerve profile in the bladder. In succinate-treated Dahl rats, detrusor contractility was reduced and associated with decreased cholinergic innervation and increased collagen content. CONCLUSIONS: It is suggested that succinate negatively affects bladder function via effects through its receptor, GPR91, and that its effects are enhanced in the presence of metabolic disturbance. These findings contribute to our understanding of the pathophysiology of bladder dysfunction, specifically in a metabolic syndrome setting.


Subject(s)
Metabolic Syndrome/physiopathology , Succinates/therapeutic use , Urinary Bladder Diseases/drug therapy , Urinary Bladder Diseases/physiopathology , Animals , Collagen/metabolism , Male , Metabolic Syndrome/complications , Muscle, Smooth/drug effects , Muscle, Smooth/physiopathology , Parasympathetic Nervous System/drug effects , Rats , Rats, Inbred Dahl , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/genetics , Urinary Bladder/drug effects , Urinary Bladder/physiopathology , Urinary Bladder Diseases/etiology
7.
Cell Signal ; 37: 31-39, 2017 09.
Article in English | MEDLINE | ID: mdl-28554536

ABSTRACT

Metabolic syndrome is associated with overactive bladder syndrome (OAB) and increased circulating levels of succinate, an intermediate of the Krebs cycle. The urothelium is an essential regulator of bladder muscle contraction. This study aimed to determine if GPR91, the succinate receptor, is expressed and functional in the bladder. Urothelial and smooth muscle cells (SMCs) were cultured and characterized. PCR revealed that urothelial cells express GPR91, twice as much as SMCs. Incubation of cells with succinate stimulated phosphorylation of ERK and JNK in urothelial cells. Succinate also potently inhibited forskolin-stimulated cyclic AMP production in urothelial cells, an effect prevented by a protein Gi inhibitor. ERK phosphorylation stimulated by succinate was abolished by inhibitors of protein Gq, phospholipase C, MAPK pathway and PKC. Incubation of urothelial cells with succinate potently increased iNOS synthesis and secretion of nitric oxide (NO), and decreased secretion of prostaglandin E2 (PGE2). Finally, succinate triggered entry of calcium in urothelial cells. GPR91 knockdown by shRNA abolished most of these signaling effects. We conclude that in the bladder, urothelial cells are a primary target of succinate through its receptor GPR91. Its activation leads to signaling via phospholipase C, MAPK, PKC pathway and protein Gq and Gi. Succinate binding to GPR91 triggers a rise in intracellular calcium, an increase in secretion of NO and a decrease in the release of PGE2. Succinate might be essential in the understanding of OAB that occurs in metabolic syndrome.


Subject(s)
Metabolic Syndrome/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Succinic Acid/metabolism , Urinary Bladder/metabolism , Urothelium/metabolism , Animals , Cells, Cultured , Female , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/analysis , Urinary Bladder/cytology , Urothelium/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...