Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Public Health ; 12: 1364221, 2024.
Article in English | MEDLINE | ID: mdl-38550311

ABSTRACT

Pharmacogenomics (PGx) is an important component of precision medicine that promises tailored treatment approaches based on an individual's genetic information. Exploring the initiatives in research that help to integrate PGx test into clinical setting, identifying the potential barriers and challenges as well as planning the future directions, are all important for fruitful PGx implementation in any population. Qatar serves as an exemplar case study for the Middle East, having a small native population compared to a diverse immigrant population, advanced healthcare system, national genome program, and several educational initiatives on PGx and precision medicine. This paper attempts to outline the current state of PGx research and implementation in Qatar within the global context, emphasizing ongoing initiatives and educational efforts. The inclusion of PGx in university curricula and healthcare provider training, alongside precision medicine conferences, showcase Qatar's commitment to advancing this field. However, challenges persist, including the requirement for population specific implementation strategies, complex genetic data interpretation, lack of standardization, and limited awareness. The review suggests policy development for future directions in continued research investment, conducting clinical trials for the feasibility of PGx implementation, ethical considerations, technological advancements, and global collaborations to overcome these barriers.


Subject(s)
Pharmacogenetics , Precision Medicine , Humans , Qatar , Public Health , Delivery of Health Care
2.
Mol Genet Genomic Med ; 11(12): e2184, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37964750

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive disease caused by mutations and deletions in SMN1 at exon 7. The carrier frequency for SMN1 mutations ranges from 2 to 4% in the general population. METHODS: We examined allelic, genotypic relatedness and copy number (CN) variations and frequencies of SMN1 and SMN2, in 13,426 samples from Qatar biobank (QBB) to provide a precise estimation of SMA carrier frequency in Qatar in comparison to other populations. RESULTS: The SMA carrier frequency was found to be (2.8%) and the rs143838139 was found in 491/13426 (3.66%) of individuals. The SNP rs121909192, which is a pathogenic risk factor, was found in 321/13500 (2.38%). In Addition 242/11379 (2.13%) had two copies of SMN1 and the rs143838139, which may explain the (2 + 0) silent carrier. Additionally, two participants were found to be SMA type 4 with 0 and 4 copy numbers in SMN1 and SMN2, respectively. CONCLUSION: The SMA carrier frequency in Qatar was found to be comparable to Saudi Arabia and Caucasians. The likely pathogenic variant, rs121909192, was found to be significantly higher when compering with other in our study. The rs143838139 variant, which has a strong association with the silent carrier genotype, has been found. Consequently, testing for this SNP may enhance the precision of evaluating the likelihood of a patient having an affected child. We conclude that the frequency of SMA carriers varies within the Qatar population and other ethnic groups.


Subject(s)
Ethnicity , Muscular Atrophy, Spinal , Child , Humans , Pilot Projects , Qatar , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics
3.
Front Psychiatry ; 14: 1251884, 2023.
Article in English | MEDLINE | ID: mdl-38025430

ABSTRACT

This study investigated the genetic underpinnings of autism spectrum disorder (ASD) in a Middle Eastern cohort in Qatar using exome sequencing. The study identified six candidate autism genes in independent simplex families, including both four known and two novel autosomal dominant and autosomal recessive genes associated with ASD. The variants consisted primarily of de novo and homozygous missense and splice variants. Multiple individuals displayed more than one candidate variant, suggesting the potential involvement of digenic or oligogenic models. These variants were absent in the Genome Aggregation Database (gnomAD) and exhibited extremely low frequencies in the local control population dataset. Two novel autism genes, TRPC4 and SCFD2, were discovered in two Qatari autism individuals. Furthermore, the D651A substitution in CLCN3 and the splice acceptor variant in DHX30 were identified as likely deleterious mutations. Protein modeling was utilized to evaluate the potential impact of three missense variants in DEAF1, CLCN3, and SCFD2 on their respective structures and functions, which strongly supported the pathogenic natures of these variants. The presence of multiple de novo mutations across trios underscored the significant contribution of de novo mutations to the genetic etiology of ASD. Functional assays and further investigations are necessary to confirm the pathogenicity of the identified genes and determine their significance in ASD. Overall, this study sheds light on the genetic factors underlying ASD in Qatar and highlights the importance of considering diverse populations in ASD research.

4.
Cell Commun Signal ; 21(1): 265, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770979

ABSTRACT

BACKGROUND: While the increased screening, changes in lifestyle, and recent advances in treatment regimen have decreased colorectal cancer (CRC) mortality, metastatic disease and recurrence remains a major clinical challenge. In the era of precision medicine, the identification of actionable novel therapeutic targets could ultimately offer an alternative treatment strategy for CRC. METHODS: RNA-Seq was conducted using the illumina platform, while bioinformatics analyses were conducted using CLC genomics workbench and iDEP.951. Colony forming unit, flow cytometry, and fluorescent microscopy were used to assess cell proliferation, cell cycle distribution, and cell death, respectively. The growth potential of CRC cells under 3-dimensional (3D) conditions was assessed using Matrigel. STRING database (v11.5) and Ingenuity Pathway Analysis (IPA) tool were used for network and pathway analyses. CRISPR-Cas9 perturbational effects database was used to identify potential therapeutic targets for CRC, through integration with gene-drug interaction database. Structural modeling and molecular docking were used to assess the interaction between candidate drugs and their targets. RESULTS: In the current study, we investigated the therapeutic potential of targeting TPX2, TTK, DDX39A, and LRP8, commonly upregulated genes in CRC identified through differential expression analysis in CRC and adjacent non-cancerous tissue. Targeted depletion of TPX2 and TTK impaired CRC proliferation, cell cycle progression, and organoid formation under 3D culture conditions, while suppression of DDX39A and LRP8 had modest effects on CRC colony formation. Differential expression analysis and bioinformatics on TPX2 and TTK-deficient cells identified cell cycle regulation as the hallmark associated with loss of TPX2 and TTK. Elevated expression of TPX2 and TTK correlated with an oncogenic state in tumor tissue from patients with colon adenocarcinoma, thus corroborating an oncogenic role for the TPX2/TTK network in the pathogenesis of CRC. Gene set enrichment and pathway analysis of TPX2high/TTKhigh CRC identified numerous additional gene targets as integral components of the TPX2/TTK network. Integration of TPX2/TTK enriched network with CRISPR-Cas9 functional screen data identified numerous novel dependencies for CRC. Additionally, gene-drug interaction analysis identified several druggable gene targets enriched in the TPX2/TTK network, including AURKA, TOP2A, CDK1, BIRC5, and many others. CONCLUSIONS: Our data has implicated an essential role for TPX2 and TTK in CRC pathogenesis and identified numerous potential therapeutic targets and their drug interactions, suggesting their potential clinical use as a novel therapeutic strategy for patients with CRC. Video Abstract.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Colorectal Neoplasms , Humans , Colonic Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Adenocarcinoma/pathology , Molecular Docking Simulation , Cell Proliferation , Gene Expression Regulation, Neoplastic , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism
5.
Mol Genet Genomic Med ; 11(8): e2178, 2023 08.
Article in English | MEDLINE | ID: mdl-37147786

ABSTRACT

BACKGROUND: Dyslipidemia is recognized as one of the risk factors of cardiovascular diseases (CVDs), type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD). OBJECTIVE: The study aimed to investigate the association between selected single nucleotide polymorphisms (SNPs) with dyslipidemia and increased susceptibility risks of CVD, NAFLD, and/or T2DM in dyslipidemia patients in comparison with healthy control individuals from the Qatar genome project. METHODS: A community-based cross-sectional study was conducted among 2933 adults (859 dyslipidemia patients and 2074 healthy control individuals) from April to December 2021 to investigate the association between 331 selected SNPs with dyslipidemia and increased susceptibility risks of CVD, NAFLD and/or T2DM, and covariates. RESULTS: The genotypic frequencies of six SNPs were found to be significantly different in dyslipidemia patients subjects compared to the control group among males and females. In males, three SNPs were found to be significant, the rs11172113 in over-dominant model, the rs646776 in recessive and over-dominant models, and the rs1111875 in dominant model. On the other hand, two SNPs were found to be significant in females, including rs2954029 in recessive model, and rs1801251 in dominant and recessive models. The rs17514846 SNP was found for dominant and over-dominant models among males and only the dominant model for females. We found that the six SNPs linked to gender type had an influence in relation to disease susceptibility. When controlling for the four covariates (gender, obesity, hypertension, and diabetes), the difference between dyslipidemia and the control group remained significant for the six variants. Finally, males were three times more likely to have dyslipidemia in comparison with females, hypertension was two times more likely to be present in the dyslipidemia group, and diabetes was six times more likely to be in the dyslipidemia group. CONCLUSION: The current investigation provides evidence of association for a common SNP to coronary heart disease and suggests a sex-dependent effect and encourage potential therapeutic applications.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Dyslipidemias , Hypertension , Non-alcoholic Fatty Liver Disease , Adult , Male , Female , Humans , Polymorphism, Single Nucleotide , Diabetes Mellitus, Type 2/genetics , Qatar/epidemiology , Cross-Sectional Studies , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/complications , Dyslipidemias/epidemiology , Dyslipidemias/genetics , Dyslipidemias/complications
6.
Mol Biol Rep ; 49(7): 5963-5972, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35476172

ABSTRACT

BACKGROUND: Molecular studies on egg production in ducks were mostly focused on brain and ovaries as they are directly involved in egg production. Liver plays a vital role in cellular lipid metabolism. It also plays a decisive role in reproductive organ development, including yolk generation in laying ducks at sexual maturity. However, the precise molecular mechanism involved in the liver-blood-ovary axis in ducks remains elusive. METHODS AND RESULTS: In this study, we analysed the liver transcriptome of laying (LA), immature (IM) and broody (BR) ducks using RNA sequencing to understand the role of genes expressed in the liver. The comparative transcriptome analysis revealed 82 DEGs between LA and IM ducks, 47 DEGs between LA and BR ducks and 51 DEGs between IM and BR ducks. GO analysis of DEGs, showed that DEGs were mainly involved in cellular anatomical entity, intracellular, metabolic process, and binding. Furthermore, pathway analysis indicated the important role of Wnt signaling pathway in egg formation and embryo development. Our study showed several candidate genes including vitellogenin-1, vitellogenin-2, riboflavin binding protein, G protein subunit gamma 4, and fatty acid binding protein 3 that are potentially related to egg production in ducks. CONCLUSIONS: The study provides valuable information on the genes responsible for egg production and thus, pave the way for further investigation on the molecular mechanisms of egg production in duck.


Subject(s)
Ducks , Transcriptome , Animals , Ducks/genetics , Female , Gene Expression Profiling , Liver/metabolism , Transcriptome/genetics , Vitellogenins/genetics , Vitellogenins/metabolism
7.
BMC Genomics ; 23(1): 176, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35246027

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) are now proven as essential regulatory elements, playing diverse roles in many biological processes including mammary gland development. However, little is known about their roles in the bovine lactation process. RESULTS: To identify and characterize the roles of lncRNAs in bovine lactation, high throughput RNA sequencing data from Jersey (high milk yield producer), and Kashmiri cattle (low milk yield producer) were utilized. Transcriptome data from three Kashmiri and three Jersey cattle throughout their lactation stages were utilized for differential expression analysis. At each stage (early, mid and late) three samples were taken from each breed. A total of 45 differentially expressed lncRNAs were identified between the three stages of lactation. The differentially expressed lncRNAs were found co-expressed with genes involved in the milk synthesis processes such as GPAM, LPL, and ABCG2 indicating their potential regulatory effects on milk quality genes. KEGG pathways analysis of potential cis and trans target genes of differentially expressed lncRNAs indicated that 27 and 48 pathways were significantly enriched between the three stages of lactation in Kashmiri and Jersey respectively, including mTOR signaling, PI3K-Akt signaling, and RAP1 signaling pathways. These pathways are known to play key roles in lactation biology and mammary gland development. CONCLUSIONS: Expression profiles of lncRNAs across different lactation stages in Jersey and Kashmiri cattle provide a valuable resource for the study of the regulatory mechanisms involved in the lactation process as well as facilitate understanding of the role of lncRNAs in bovine lactation biology.


Subject(s)
Milk , RNA, Long Noncoding , Animals , Cattle/genetics , Epithelial Cells/metabolism , Female , Lactation/genetics , Lactation/metabolism , Mammary Glands, Animal/metabolism , Milk/metabolism , Phosphatidylinositol 3-Kinases/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcriptome
8.
Nat Genet ; 52(1): 106-117, 2020 01.
Article in English | MEDLINE | ID: mdl-31907489

ABSTRACT

Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the 'venom-ome' and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 'venom-ome-specific toxins' (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery.


Subject(s)
Computational Biology/methods , Elapid Venoms/analysis , Elapid Venoms/genetics , Genome , Naja naja/genetics , Transcriptome , Amino Acid Sequence , Animals , Gene Expression Profiling , India , Sequence Homology
9.
Sci Rep ; 9(1): 14516, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601912

ABSTRACT

Non Hodgkin lymphoma, predominantly Diffuse Large B-cell Lymphoma (DLBCL) has been reported to have a significant association with Hepatitis B virus (HBV). We investigated the presence of different gene segments of HBV in plasma, B-cells and tumor tissues from DLBCL patients and explored the genetic variability of HBV within and across different compartments in a host using Next Generation Sequencing. Despite all 40 patients being HBV seronegative, 68% showed evidence of occult HBV. Sequencing of these gene segments revealed inter-compartment viral variants in 26% of them, each with at least one non-synonymous mutation. Between compartments, core gene variants revealed Arg94Leu, Glu86Arg and Ser41Thr while X gene variants revealed Phe73Val, Ala44Val, Ser146Ala and Ser147Pro. In tumor compartments per se, several mis-sense mutations were detected, notably the classic T1762A/A1764G mutation in the basal core promoter. In addition, a virus surface antigen mis-sense mutation resulting in M125T was detected in all the samples and could account for surface antigen negativity and occult HBV status. It would be interesting to further explore if a temporal accumulation of viral variants within a favored niche, like patients' lymphocytes, could bestow survival advantage to the virus, and if certain pro-oncogenic HBV variants could drive lymphomagenesis in DLBCL.


Subject(s)
Hepatitis B virus/classification , Hepatitis B/virology , Lymphoma, Large B-Cell, Diffuse/virology , Quasispecies , Adult , Aged , Aged, 80 and over , DNA, Viral/genetics , Genetic Variation , Hepatitis B/complications , Hepatitis B Surface Antigens/genetics , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Middle Aged , Mutation, Missense , Prospective Studies , Young Adult
10.
Anim Biotechnol ; 30(3): 219-232, 2019 Jul.
Article in English | MEDLINE | ID: mdl-29938580

ABSTRACT

Indigenous cattle of India belong to the species, Bos indicus and they possess various adaptability and production traits. However, little is known about the genetic diversity and origin of these breeds. To investigate the status, we sequenced and analyzed the whole mitochondrial DNA (mtDNA) of seven Indian cattle breeds. In total, 49 single-nucleotide variants (SNVs) were identified among the seven breeds analyzed. We observed a common synonymous SNV in the COII gene (m.7583G > A) of all the breeds studied. The phylogenetic analysis and genetic distance estimation showed the close genetic relationship among the Indian cattle breeds, whereas distinct genetic differences were observed between Bos indicus and Bos taurus cattle. Our results indicate a common ancestor for European Zwergzebu breed and South Indian cattle. The estimated divergence time demonstrated that the Bos indicus and Bos taurus cattle lineages diverged 0.92 million years ago. Our study also demonstrates that ancestors of present zebu breeds originated in South and North India separately ∼30,000 to 20,000 years ago. In conclusion, the identified genetic variants and results of the phylogenetic analysis may provide baseline information to develop appropriate strategies for management and conservation of Indian cattle breeds.


Subject(s)
Cattle/genetics , Genetic Variation , Genome, Mitochondrial/genetics , Animals , Conservation of Natural Resources , DNA, Mitochondrial/genetics , Female , India , Phenotype , Phylogeny , Polymorphism, Single Nucleotide
11.
Mitochondrial DNA B Resour ; 3(1): 207-208, 2018 Feb 10.
Article in English | MEDLINE | ID: mdl-33490497

ABSTRACT

India has 40 distinct zebuine cattle breeds with different adaptability and production traits. In the present study, we report the complete mitochondrial genome sequence of Indian cattle for the first time. The mitogenome contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a control region (D-loop region). The phylogenetic analysis showed close genetic relationship among the Indian cattle breeds studied, where as, distinct genetic differences were observed between Bos indicus and Bos taurus cattle. Our results will expand genomic information for further studies on evolution, domestication and conservation of indigenous cattle breeds in India.

12.
J Hypertens ; 33(6): 1301-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25695618

ABSTRACT

BACKGROUND: Thiazide diuretics have been recommended as a first-line antihypertensive treatment, although the choice of 'the right drug in the individual essential hypertensive patient' remains still empirical. Essential hypertension is a complex, polygenic disease derived from the interaction of patient's genetic background with the environment. Pharmacogenomics could be a useful tool to pinpoint gene variants involved in antihypertensive drug response, thus optimizing therapeutic advantages and minimizing side effects. METHODS AND RESULTS: We looked for variants associated with blood pressure response to hydrochlorothiazide over an 8-week follow-up by means of a genome-wide association analysis in two Italian cohorts of never-treated essential hypertensive patients: 343 samples from Sardinia and 142 from Milan. TET2 and CSMD1 as plausible candidate genes to affect SBP response to hydrochlorothiazide were identified. The specificity of our findings for hydrochlorothiazide was confirmed in an independent cohort of essential hypertensive patients treated with losartan. Our best findings were also tested for replication in four independent hypertensive samples of European Ancestry, such as GENetics of drug RESponsiveness in essential hypertension, Genetic Epidemiology of Responses to Antihypertensives, NORdic DILtiazem intervention, Pharmacogenomics Evaluation of Antihypertensive Responses, and Campania Salute Network-StayOnDiur. We validated a polymorphism in CSMD1 and UGGT2. CONCLUSION: This exploratory study reports two plausible loci associated with SBP response to hydrochlorothiazide: TET2, an aldosterone-responsive mediator of αENaC gene transcription; and CSMD1, previously described as associated with hypertension in a case-control study.


Subject(s)
Antihypertensive Agents/therapeutic use , DNA-Binding Proteins/genetics , Hydrochlorothiazide/therapeutic use , Hypertension/drug therapy , Hypertension/genetics , Membrane Proteins/genetics , Proto-Oncogene Proteins/genetics , Sodium Chloride Symporter Inhibitors/therapeutic use , Adult , Aged , Aldosterone/pharmacology , Blood Pressure/drug effects , Blood Pressure/genetics , Case-Control Studies , Dioxygenases , Essential Hypertension , Genome-Wide Association Study , Humans , Italy , Losartan/therapeutic use , Male , Middle Aged , Pharmacogenetics , Systole/genetics , Tumor Suppressor Proteins , White People
13.
Pharmacogenomics ; 15(13): 1643-52, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25410890

ABSTRACT

BACKGROUND: Essential hypertension arises from the combined effect of genetic and environmental factors. A pharmacogenomics approach could help to identify additional molecular mechanisms involved in its pathogenesis. AIM: The aim of SOPHIA study was to identify genetic polymorphisms regulating blood pressure response to the angiotensin II receptor blocker, losartan, with a whole-genome approach. MATERIALS & METHODS: We performed a genome-wide association study on blood pressure response in 372 hypertensives treated with losartan and we looked for replication in two independent samples. RESULTS: We identified a peak of association in CAMK1D gene (rs10752271, effect size -5.5 ± 0.94 mmHg, p = 1.2 × 10(-8)). CAMK1D encodes a protein that belongs to the regulatory pathway involved in aldosterone synthesis. We tested the specificity of rs10752271 for losartan in hypertensives treated with hydrochlorothiazide and we validated it in silico in the GENRES cohort. CONCLUSION: Using a genome-wide approach, we identified the CAMK1D gene as a novel locus associated with blood pressure response to losartan. CAMK1D gene characterization may represent a useful tool to personalize the treatment of essential hypertension.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/therapeutic use , Blood Pressure/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Genome-Wide Association Study , Hypertension/drug therapy , Losartan/therapeutic use , Polymorphism, Single Nucleotide , Adult , Female , Humans , Hydrochlorothiazide/therapeutic use , Hypertension/genetics , Hypertension/physiopathology , Losartan/pharmacology , Male , Middle Aged
14.
Hypertension ; 62(5): 844-52, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24019403

ABSTRACT

A case-control study revealed association between hypertension and rs3918226 in the endothelial nitric oxide synthase (eNOS) gene promoter (minor/major allele, T/C allele). We aimed at substantiating these preliminary findings by target sequencing, cell experiments, and a population study. We sequenced the 140-kb genomic area encompassing the eNOS gene. In HeLa and HEK293T cells transfected with the eNOS promoter carrying either the T or the C allele, we quantified transcription by luciferase assay. In 2722 randomly recruited Europeans (53.0% women; mean age 40.1 years), we studied blood pressure change and incidence of hypertension in relation to rs3918226, using multivariable-adjusted models. Sequencing confirmed rs3918226, a binding site of E-twenty six transcription factors, as the single nucleotide polymorphism most closely associated with hypertension. In T compared with C transfected cells, eNOS promoter activity was from 20% to 40% (P<0.01) lower. In the population, systolic/diastolic blood pressure increased over 7.6 years (median) by 9.7/6.8 mm Hg in 28 TT homozygotes and by 3.8/1.9 mm Hg in 2694 C allele carriers (P≤0.0004). The blood pressure rise was 5.9 mm Hg systolic (confidence interval [CI], 0.6-11.1; P=0.028) and 4.8 mm Hg diastolic (CI, 1.5-8.2; P=0.0046) greater in TT homozygotes, with no differences between the CT and CC genotypes (P≥0.90). Among 2013 participants normotensive at baseline, 692 (34.4%) developed hypertension. The hazard ratio and attributable risk associated with TT homozygosity were 2.04 (CI, 1.24-3.37; P=0.0054) and 51.0%, respectively. In conclusion, rs3918226 in the eNOS promoter tags a hypertension susceptibility locus, TT homozygosity being associated with lesser transcription and higher risk of hypertension.


Subject(s)
Blood Pressure/genetics , Genetic Predisposition to Disease , Hypertension/genetics , Nitric Oxide Synthase Type III/genetics , Promoter Regions, Genetic , Adult , Alleles , Case-Control Studies , Endothelium, Vascular/physiopathology , Female , Genotype , Humans , Hypertension/physiopathology , Male , Middle Aged , Polymorphism, Single Nucleotide , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...