Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
Sensors (Basel) ; 20(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260624

ABSTRACT

Assessing the human affective state using electroencephalography (EEG) have shown good potential but failed to demonstrate reliable performance in real-life applications. Especially if one applies a setup that might impact affective processing and relies on generalized models of affect. Additionally, using subjective assessment of ones affect as ground truth has often been disputed. To shed the light on the former challenge we explored the use of a convenient EEG system with 20 participants to capture their reaction to affective movie clips in a naturalistic setting. Employing state-of-the-art machine learning approach demonstrated that the highest performance is reached when combining linear features, namely symmetry features and single-channel features, with nonlinear ones derived by a multiscale entropy approach. Nevertheless, the best performance, reflected in the highest F1-score achieved in a binary classification task for valence was 0.71 and for arousal 0.62. The performance was 10-20% better compared to using ratings provided by 13 independent raters. We argue that affective self-assessment might be underrated and it is crucial to account for personal differences in both perception and physiological response to affective cues.


Subject(s)
Electroencephalography , Emotions , Arousal , Electrodes , Entropy , Humans
3.
Health Sci Rep ; 1(8): e60, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30623095

ABSTRACT

AIMS: Chronic stress is an important factor for a variety of health problems, highlighting the importance of early detection of stress-related problems. This methodological pilot study investigated whether the physiological response to and recovery from a stress task can differentiate healthy participants and persons with stress-related complaints. METHODS AND RESULTS: Healthy participants (n = 20) and participants with stress-related complaints (n = 12) participated in a laboratory stress test, which included 3 stress tasks. Three physiological signals were recorded: galvanic skin response (GSR), heart rate (HR), and skin temperature (ST). From these signals, 126 features were extracted, including static (eg, mean) and dynamic (eg, recovery time) features. Unsupervised feature selection reduced the set to 26 features. A logistic regression model was developed for 6 feature sets, analysing single-parameter and multiparameter models as well as models using recovery vs response-related features. The highest classification performance (accuracy = 78%) was obtained using the response-related feature set, including all physiological signals and using GSR-related features. A worse performance was obtained using single-signal feature sets based on HR (accuracy = 66%) and ST (accuracy = 59%). Response-related features outperformed recovery-related features (accuracy = 63%). CONCLUSION: Participants with stress-related complaints may be differentiated from healthy controls by physiological responses to stress tasks. We aimed to bring attention to new exploratory methodologies; further research is needed to validate and replicate the results on larger populations and patients on different areas along the stress continuum.

5.
J Nucl Med ; 58(4): 569-576, 2017 04.
Article in English | MEDLINE | ID: mdl-27688480

ABSTRACT

PET-based radiomics have been used to noninvasively quantify the metabolic tumor phenotypes; however, little is known about the relationship between these phenotypes and underlying somatic mutations. This study assessed the association and predictive power of 18F-FDG PET-based radiomic features for somatic mutations in non-small cell lung cancer patients. Methods: Three hundred forty-eight non-small cell lung cancer patients underwent diagnostic 18F-FDG PET scans and were tested for genetic mutations. Thirteen percent (44/348) and 28% (96/348) of patients were found to harbor epidermal growth factor receptor (EGFR) or Kristen rat sarcoma viral (KRAS) mutations, respectively. We evaluated 21 imaging features: 19 independent radiomic features quantifying phenotypic traits and 2 conventional features (metabolic tumor volume and maximum SUV). The association between imaging features and mutation status (e.g., EGFR-positive [EGFR+] vs. EGFR-negative) was assessed using the Wilcoxon rank-sum test. The ability of each imaging feature to predict mutation status was evaluated by the area under the receiver operating curve (AUC) and its significance was compared with a random guess (AUC = 0.5) using the Noether test. All P values were corrected for multiple hypothesis testing by controlling the false-discovery rate (FDRWilcoxon, FDRNoether) with a significance threshold of 10%. Results: Eight radiomic features and both conventional features were significantly associated with EGFR mutation status (FDRWilcoxon = 0.01-0.10). One radiomic feature (normalized inverse difference moment) outperformed all other features in predicting EGFR mutation status (EGFR+ vs. EGFR-negative, AUC = 0.67, FDRNoether = 0.0032), as well as differentiating between KRAS-positive and EGFR+ (AUC = 0.65, FDRNoether = 0.05). None of the features was associated with or predictive of KRAS mutation status (KRAS-positive vs. KRAS-negative, AUC = 0.50-0.54). Conclusion: Our results indicate that EGFR mutations may drive different metabolic tumor phenotypes that are captured in PET images, whereas KRAS-mutated tumors do not. This proof-of-concept study sheds light on genotype-phenotype interactions, using radiomics to capture and describe the phenotype, and may have potential for developing noninvasive imaging biomarkers for somatic mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Mutation , Phenotype , Positron-Emission Tomography , Adult , Aged , Aged, 80 and over , Female , Fluorodeoxyglucose F18 , Humans , Male , Middle Aged , Retrospective Studies
6.
PLoS One ; 10(3): e0118261, 2015.
Article in English | MEDLINE | ID: mdl-25739030

ABSTRACT

Two CT features were developed to quantitatively describe lung adenocarcinomas by scoring tumor shape complexity (feature 1: convexity) and intratumor density variation (feature 2: entropy ratio) in routinely obtained diagnostic CT scans. The developed quantitative features were analyzed in two independent cohorts (cohort 1: n = 61; cohort 2: n = 47) of patients diagnosed with primary lung adenocarcinoma, retrospectively curated to include imaging and clinical data. Preoperative chest CTs were segmented semi-automatically. Segmented tumor regions were further subdivided into core and boundary sub-regions, to quantify intensity variations across the tumor. Reproducibility of the features was evaluated in an independent test-retest dataset of 32 patients. The proposed metrics showed high degree of reproducibility in a repeated experiment (concordance, CCC≥0.897; dynamic range, DR≥0.92). Association with overall survival was evaluated by Cox proportional hazard regression, Kaplan-Meier survival curves, and the log-rank test. Both features were associated with overall survival (convexity: p = 0.008; entropy ratio: p = 0.04) in Cohort 1 but not in Cohort 2 (convexity: p = 0.7; entropy ratio: p = 0.8). In both cohorts, these features were found to be descriptive and demonstrated the link between imaging characteristics and patient survival in lung adenocarcinoma.


Subject(s)
Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Tomography, X-Ray Computed , Adenocarcinoma of Lung , Aged , Entropy , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Prognosis , Proportional Hazards Models , Retrospective Studies
7.
Nat Commun ; 5: 4006, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24892406

ABSTRACT

Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost.


Subject(s)
Adenocarcinoma/diagnosis , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Squamous Cell/diagnosis , Head and Neck Neoplasms/diagnosis , Lung Neoplasms/diagnosis , Female , Humans , Male , Multimodal Imaging , Phenotype , Positron-Emission Tomography , Prognosis , Tomography, X-Ray Computed , Tumor Burden
8.
Sci Rep ; 3: 3529, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24346241

ABSTRACT

Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the "gold standard". The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81-0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , Cone-Beam Computed Tomography/methods , Diagnosis, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Lung Neoplasms/diagnosis , Algorithms , Biomarkers, Tumor , Humans , Lung/pathology , Pattern Recognition, Automated/methods , Positron-Emission Tomography/methods , Software
9.
Acta Oncol ; 52(7): 1391-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24047337

ABSTRACT

PURPOSE: Besides basic measurements as maximum standardized uptake value (SUV)max or SUVmean derived from 18F-FDG positron emission tomography (PET) scans, more advanced quantitative imaging features (i.e. "Radiomics" features) are increasingly investigated for treatment monitoring, outcome prediction, or as potential biomarkers. With these prospected applications of Radiomics features, it is a requisite that they provide robust and reliable measurements. The aim of our study was therefore to perform an integrated stability analysis of a large number of PET-derived features in non-small cell lung carcinoma (NSCLC), based on both a test-retest and an inter-observer setup. METHODS: Eleven NSCLC patients were included in the test-retest cohort. Patients underwent repeated PET imaging within a one day interval, before any treatment was delivered. Lesions were delineated by applying a threshold of 50% of the maximum uptake value within the tumor. Twenty-three NSCLC patients were included in the inter-observer cohort. Patients underwent a diagnostic whole body PET-computed tomography (CT). Lesions were manually delineated based on fused PET-CT, using a standardized clinical delineation protocol. Delineation was performed independently by five observers, blinded to each other. Fifteen first order statistics, 39 descriptors of intensity volume histograms, eight geometric features and 44 textural features were extracted. For every feature, test-retest and inter-observer stability was assessed with the intra-class correlation coefficient (ICC) and the coefficient of variability, normalized to mean and range. Similarity between test-retest and inter-observer stability rankings of features was assessed with Spearman's rank correlation coefficient. RESULTS: Results showed that the majority of assessed features had both a high test-retest (71%) and inter-observer (91%) stability in terms of their ICC. Overall, features more stable in repeated PET imaging were also found to be more robust against inter-observer variability. CONCLUSION: Results suggest that further research of quantitative imaging features is warranted with respect to more advanced applications of PET imaging as being used for treatment monitoring, outcome prediction or imaging biomarkers.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Fluorodeoxyglucose F18 , Lung Neoplasms/diagnostic imaging , Observer Variation , Positron-Emission Tomography , Radiotherapy, Image-Guided , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Humans , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Prognosis , Radiopharmaceuticals , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed
10.
Acta Oncol ; 52(7): 1398-404, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24047338

ABSTRACT

BACKGROUND: Maximum, mean and peak SUV of primary tumor at baseline FDG-PET scans, have often been found predictive for overall survival in non-small cell lung cancer (NSCLC) patients. In this study we further investigated the prognostic power of advanced metabolic metrics derived from intensity volume histograms (IVH) extracted from PET imaging. METHODS: A cohort of 220 NSCLC patients (mean age, 66.6 years; 149 men, 71 women), stages I-IIIB, treated with radiotherapy with curative intent were included (NCT00522639). Each patient underwent standardized pre-treatment CT-PET imaging. Primary GTV was delineated by an experienced radiation oncologist on CT-PET images. Common PET descriptors such as maximum, mean and peak SUV, and metabolic tumor volume (MTV) were quantified. Advanced descriptors of metabolic activity were quantified by IVH. These comprised five groups of features: absolute and relative volume above relative intensity threshold (AVRI and RVRI), absolute and relative volume above absolute intensity threshold (AVAI and RVAI), and absolute intensity above relative volume threshold (AIRV). MTV was derived from the IVH curves for volumes with SUV above 2.5, 3 and 4, and of 40% and 50% maximum SUV. Univariable analysis using Cox Proportional Hazard Regression was performed for overall survival assessment. RESULTS: Relative volume above higher SUV (80%) was an independent predictor of OS (p = 0.05). None of the possible surrogates for MTV based on volumes above SUV of 3, 40% and 50% of maximum SUV showed significant associations with OS [p (AVAI3) = 0.10, p (AVAI4) = 0.22, p (AVRI40%) = 0.15, p (AVRI50%) = 0.17]. Maximum and peak SUV (r = 0.99) revealed no prognostic value for OS [p (maximum SUV) = 0.20, p (peak SUV) = 0.22]. CONCLUSIONS: New methods using more advanced imaging features extracted from PET were analyzed. Best prognostic value for OS of NSCLC patients was found for relative portions of the tumor above higher uptakes (80% SUV).


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Fluorodeoxyglucose F18 , Lung Neoplasms/diagnostic imaging , Positron-Emission Tomography , Radiotherapy, Image-Guided , Aged , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/radiotherapy , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/radiotherapy , Male , Neoplasm Staging , Prognosis , Radiopharmaceuticals , Radiotherapy Planning, Computer-Assisted , Tumor Burden
11.
Radiother Oncol ; 109(1): 159-64, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23993399

ABSTRACT

PURPOSE: An overview of the Rapid Learning methodology, its results, and the potential impact on radiotherapy. MATERIAL AND RESULTS: Rapid Learning methodology is divided into four phases. In the data phase, diverse data are collected about past patients, treatments used, and outcomes. Innovative information technologies that support semantic interoperability enable distributed learning and data sharing without additional burden on health care professionals and without the need for data to leave the hospital. In the knowledge phase, prediction models are developed for new data and treatment outcomes by applying machine learning methods to data. In the application phase, this knowledge is applied in clinical practice via novel decision support systems or via extensions of existing models such as Tumour Control Probability models. In the evaluation phase, the predictability of treatment outcomes allows the new knowledge to be evaluated by comparing predicted and actual outcomes. CONCLUSION: Personalised or tailored cancer therapy ensures not only that patients receive an optimal treatment, but also that the right resources are being used for the right patients. Rapid Learning approaches combined with evidence based medicine are expected to improve the predictability of outcome and radiotherapy is the ideal field to study the value of Rapid Learning. The next step will be to include patient preferences in the decision making.


Subject(s)
Decision Support Systems, Clinical , Neoplasms/radiotherapy , Precision Medicine , Evidence-Based Medicine , Humans , Learning
12.
Pattern Recognit ; 46(3): 692-702, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23459617

ABSTRACT

A single click ensemble segmentation (SCES) approach based on an existing "Click&Grow" algorithm is presented. The SCES approach requires only one operator selected seed point as compared with multiple operator inputs, which are typically needed. This facilitates processing large numbers of cases. Evaluation on a set of 129 CT lung tumor images using a similarity index (SI) was done. The average SI is above 93% using 20 different start seeds, showing stability. The average SI for 2 different readers was 79.53%. We then compared the SCES algorithm with the two readers, the level set algorithm and the skeleton graph cut algorithm obtaining an average SI of 78.29%, 77.72%, 63.77% and 63.76% respectively. We can conclude that the newly developed automatic lung lesion segmentation algorithm is stable, accurate and automated.

13.
Acta Oncol ; 49(7): 1033-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20831492

ABSTRACT

PURPOSE: Metabolic response assessment is often used as a surrogate of local failure and survival. Early identification of patients with residual metabolic activity is essential as this enables selection of patients who could potentially benefit from additional therapy. We report on the development of a pre-treatment prediction model for metabolic response using patient, tumor and treatment factors. METHODS: One hundred and one patients with inoperable NSCLC (stage I-IV), treated with 3D conformal radical (chemo)-radiotherapy were retrospectively included in this study. All patients received a pre and post-radiotherapy fluorodeoxyglucose positron emission tomography-computed tomography FDG-PET-CT scan. The electronic medical record system and the medical patient charts were reviewed to obtain demographic, clinical, tumor and treatment data. Primary outcome measure was examined using a metabolic response assessment on a post-radiotherapy FDG-PET-CT scan. Radiotherapy was delivered in fractions of 1.8 Gy, twice a day, with a median prescribed dose of 60 Gy. RESULTS: Overall survival was worse in patients with residual metabolic active areas compared with the patients with a complete metabolic response (p=0.0001). In univariate analysis, three variables were significantly associated with residual disease: larger primary gross tumor volume (GTV(primary), p=0.002), higher pre-treatment maximum standardized uptake value (SUV(max), p=0.0005) in the primary tumor and shorter overall treatment time (OTT, p=0.046). A multivariate model including GTV(primary), SUV(max), equivalent radiation dose at 2 Gy corrected for time (EQD(2, T)) and OTT yielded an area under the curve assessed by the leave-one-out cross validation of 0.71 (95% CI, 0.65-0.76). CONCLUSION: Our results confirmed the validity of metabolic response assessment as a surrogate of survival. We developed a multivariate model that is able to identify patients at risk of residual disease. These patients may benefit from an individualized and more adequate therapeutic approach, thereby improving local control and survival.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/analysis , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cell Survival , Female , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/radiotherapy , Male , Middle Aged , Neoplasm, Residual , Positron-Emission Tomography/methods , Prognosis , Radiation-Sensitizing Agents/therapeutic use , Radiotherapy, Conformal/methods , Retrospective Studies , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL
...