Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(21): e2122544119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35588456

ABSTRACT

Environmental perturbations during the first years of life are a major factor in psychiatric diseases. Phencyclidine (PCP), a drug of abuse, has psychomimetic effects, and neonatal subchronic administration of PCP in rodents leads to long-term behavioral changes relevant for schizophrenia. The cerebellum is increasingly recognized for its role in diverse cognitive functions. However, little is known about potential cerebellar changes in models of schizophrenia. Here, we analyzed the characteristics of the cerebellum in the neonatal subchronic PCP model. We found that, while the global cerebellar cytoarchitecture and Purkinje cell spontaneous spiking properties are unchanged, climbing fiber/Purkinje cell synaptic connectivity is increased in juvenile mice. Neonatal subchronic administration of PCP is accompanied by increased cFos expression, a marker of neuronal activity, and transient modification of the neuronal surfaceome in the cerebellum. The largest change observed is the overexpression of Ctgf, a gene previously suggested as a biomarker for schizophrenia. This neonatal increase in Ctgf can be reproduced by increasing neuronal activity in the cerebellum during the second postnatal week using chemogenetics. However, it does not lead to increased climbing fiber/Purkinje cell connectivity in juvenile mice, showing the complexity of PCP action. Overall, our study shows that administration of the drug of abuse PCP during the developmental period of intense cerebellar synaptogenesis and circuit remodeling has long-term and specific effects on Purkinje cell connectivity and warrants the search for this type of synaptic changes in psychiatric diseases.


Subject(s)
Hallucinogens , Phencyclidine , Purkinje Cells , Schizophrenia , Animals , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Disease Models, Animal , Hallucinogens/administration & dosage , Hallucinogens/adverse effects , Mice , Neurons/drug effects , Neurons/metabolism , Phencyclidine/administration & dosage , Phencyclidine/adverse effects , Proto-Oncogene Proteins c-fos/metabolism , Purkinje Cells/drug effects , Purkinje Cells/physiology , Purkinje Cells/ultrastructure , Receptors, Phencyclidine/agonists , Schizophrenia/chemically induced , Schizophrenia/pathology , Synapses/drug effects , Synapses/ultrastructure
2.
Elife ; 102021 03 04.
Article in English | MEDLINE | ID: mdl-33661101

ABSTRACT

Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.


Subject(s)
Complement Inactivator Proteins/genetics , Learning , Membrane Proteins/genetics , Motor Activity/genetics , Neuronal Plasticity/genetics , Animals , Complement Inactivator Proteins/metabolism , Male , Membrane Proteins/metabolism , Mice
3.
J Neurosci Methods ; 263: 23-35, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26820905

ABSTRACT

BACKGROUND: Identification of cell phenotype from brain slices upon which in vitro electrophysiological recordings have been performed often relies on conducting post hoc immunohistochemistry on tissue that necessarily has not been ideally prepared for immunohistochemical procedures. In such studies, antibody labeling against neuronal nitric oxide synthase (bNOS) has been used to identify cholinergic neurons of the laterodorsal tegmental nucleus (LDT) and the pedunculopontine tegmental nuclei (PPT), two brainstem nuclei importantly involved in arousal. However, a widespread perception maintains that antibody staining for enzymes involved in synthesis or transport, of acetylcholine would be a more definitive marker and hence, preferable. NEW METHOD: Colocalization of bNOS and CHAT in the LDT/PPT, and presence of parvalbumin (PV), was examined in non-ideally prepared mouse brain slices using currently available antibodies. RESULTS: Using fluorescent-based immunohistochemistry in LDT/PPT slices prepared for in vitro recordings, a near 100% colocalization of bNOS and CHAT was observed. COMPARISON WITH EXISTING METHOD: We confirm in the mouse, findings of near 100% colocalization of bNOS and CHAT in the LDT/PPT, and we expand upon data from rat studies using optimally prepared tissue, that for dendritic visualization, bNOS staining exceeded the quality of CHAT staining for visualization of a higher degree of detail of fine processes. PV is not highly present in the mouse LDT/PPT. CONCLUSION: CHAT and bNOS are equally useful target proteins for immunofluorescent identification of cholinergic LDT/PPT cells in mouse brain slices prepared for in vitro recordings, however, antibody targeting of bNOS allows for a superior appreciation of structural detail.


Subject(s)
Choline O-Acetyltransferase/metabolism , Electrophysiological Phenomena/physiology , Nitric Oxide Synthase Type I/metabolism , Tegmentum Mesencephali/cytology , Tegmentum Mesencephali/metabolism , Animals , Animals, Newborn , Cell Count , Diagnostic Errors , Electrophysiology , Female , In Vitro Techniques , Male , Mice , Microscopy, Fluorescence , Neurons/physiology , Parvalbumins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...