Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Risk Anal ; 41(10): 1823-1839, 2021 10.
Article in English | MEDLINE | ID: mdl-33472277

ABSTRACT

Exploring the effects of meteo-oceanographic (MO) events on ships' maneuverability and safety has great potential, since most maritime accidents occur in confined waters, where the speed of ships is low, and the forces of wind and current on ships have particular importance. Therefore, we put forward a methodology that will be used to qualify and classify the risks caused by MO factors to how ships maneuver, dock or undock in a port. The objective is to generate important information for managing risk. The methodology is validated and illustrated step-by-step by applying it in Suape, one of the most important ports in Brazil, where the docking of larger tankers (e.g., Suezmax) was not allowed until recently when dredging was done to fit the specifications of such ships, thereby expanding the port's operations. MO data on Suape were collected and recorded from September 2016 to November 2017 and used for the application. Based on expert opinion and discussion with a Suape pilot, 36 accidental scenarios (ASs) were identified and categorized using preliminary hazard analysis. From these, the seven most severe ASs were selected so as to assess in more detail the frequency and consequences of accidents on human health, the environment, and property, for which the MO statistics for the likelihood of an accident and/or dispersal of an oil spill were used. The results show that the methodology is viable to assess risks caused by bad weather and to communicate these to pilots and competent authorities, thus improving the safety of operations.

2.
An Acad Bras Cienc ; 92(2): e20180851, 2020.
Article in English | MEDLINE | ID: mdl-32520215

ABSTRACT

Oceanographic features influence the early stages of fish to a high degree. We investigated the influence of continental shelf-slope gradient on the ichthyoplankton composition and distribution off Northeastern Brazil. Two oceanographic campaigns were performed during July-August 2010 and 2012. The samplings were performed along three transects composed by three stations, covering the continental shelf and slope areas. Abiotic data were obtained by an ADCP and a CTD. The ichthyoplankton was sampled through diurnal and nocturnal hauls using a 500-µm bongo net from 200 m to the surface. A total of 1634 larvae and 4023 eggs, representing 91 genera and 76 species, were collected. Higher concentrations of fish eggs were found on the continental shelf, probably because of the North Brazil Undercurrent flux. Higher concentrations of larvae were found at night and could be associated with net avoidance or natural variation. Neritic, oceanic and transition groups of species association were determined. Larvae of neritic, demersal and pelagic fishes prevailed on the continental shelf, while larvae of oceanic, mesopelagic and bathypelagic fishes on the continental slope. Melanostomiidae, Scorpaena sp., Lestidium atlanticum, Lampadena sp. and Diaphus sp. were identified as indicators of the continental slope.


Subject(s)
Biodiversity , Fishes/classification , Animals , Brazil , Seasons
3.
Front Microbiol ; 9: 355, 2018.
Article in English | MEDLINE | ID: mdl-29545783

ABSTRACT

At the mouth of the Amazon River, a widespread carbonate ecosystem exists below the river plume, generating a hard-bottom reef (∼9500 km2) that includes mainly large sponges but also rhodolith beds. The mesozooplankton associated with the pelagic realm over the reef formation was characterized, considering the estuarine plume and oceanic influence. Vertical hauls were carried out using a standard plankton net with 200 µm mesh size during September 2014. An indicator index was applied to express species importance as ecological indicators in community. Information on functional traits was gathered for the most abundant copepod species. Overall, 179 zooplankton taxa were recorded. Copepods were the richest (92 species), most diverse and most abundant group, whereas meroplankton were rare and less abundant. Species diversity (>3.0 bits.ind-1) and evenness (>0.6) were high, indicating a complex community. Small holoplanktonic species dominated the zooplankton, and the total density varied from 107.98 ind. m-3 over the reef area to 2,609.24 ind. m-3 in the estuarine plume, with a significant difference between coastal and oceanic areas. The most abundant copepods were the coastal species ithona plumifera and Clausocalanus furcatus and early stages copepodites of Paracalanidae. The holoplanktonic Oikopleura, an important producer of mucous houses, was very abundant on the reefs. The indicator species index revealed three groups: (1) indicative of coastal waters under the influence of the estuarine plume [Euterpina acutifrons, Parvocalanus crassirostris, Oikopleura (Vexillaria) dioica and Hydromedusae]; (2) characterized coastal and oceanic conditions (Clausocalanus); (3) characterized the reef system (O. plumifera). Two major copepods functional groups were identified and sorted according to their trophic strategy and coastal-oceanic distribution. The species that dominated the coastal area and the area over the rhodolith beds are indicators of the estuarine plume and are mixed with species of the North Brazil Current. These species practically disappear offshore, where occur oceanic species commonly found in other oligotrophic tropical areas. This ecosystem shows a mixture of estuarine, coastal and oceanic communities coexisting in the waters over the Amazon reefs, with no significant differences among these areas. However, the MDS clearly separated the communities along the salinity gradient in the plume.

4.
Front Microbiol ; 8: 1358, 2017.
Article in English | MEDLINE | ID: mdl-28824554

ABSTRACT

The Amazon generates the world's largest offshore river plume, which covers extensive areas of the tropical Atlantic. The data and samples in this study were obtained during the oceanographic cruise Camadas Finas III in October 2012 along the Amazon River-Ocean Continuum (AROC). The cruise occurred during boreal autumn, when the river plume reaches its maximum eastward extent. In this study, we examine the links between physics, biogeochemistry and plankton community structure along the AROC. Hydrographic results showed very different conditions, ranging from shallow well-mixed coastal waters to offshore areas, where low salinity Amazonian waters mix with open ocean waters. Nutrients, mainly [Formula: see text] and [Formula: see text], were highly depleted in coastal regions, and the magnitude of primary production was greater than that of respiration (negative apparent oxygen utilization). In terms of phytoplankton groups, diatoms dominated the region from the river mouth to the edge of the area affected by the North Brazil Current (NBC) retroflection (with chlorophyll a concentrations ranging from 0.02 to 0.94 mg m-3). The North Equatorial Counter Current (NECC) region, east of retroflection, is fully oligotrophic and the most representative groups are Cyanobacteria and dinoflagellates. Additionally, in this region, blooms of cyanophyte species were associated with diatoms and Mesozooplankton (copepods). A total of 178 zooplankton taxa were observed in this area, with Copepoda being the most diverse and abundant group. Two different zooplankton communities were identified: a low-diversity, high-abundance coastal community and a high-diversity, low-abundance oceanic community offshore. The CO2 fugacity (fCO2sw), calculated from total alkalinity (1,450 < TA < 2,394 µmol kg-1) and dissolved inorganic carbon (1,303 < DIC < 2,062 µmol kg-1) measurements, confirms that the Amazon River plume is a sink of atmospheric CO2 in areas with salinities <35 psu, whereas, in regions with salinities >35 and higher-intensity winds, the CO2 flux is reversed. Lower fCO2sw values were observed in the NECC area. The ΔfCO2 in this region was less than 5 µatm (-0.3 mmol m-2 d-1), while the ΔfCO2 in the coastal region was approximately 50 µatm (+3.7 mmol m-2 d-1). During the cruise, heterotrophic and autotrophic processes were observed and are indicative of the influences of terrestrial material and biological activity, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...