Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Int J Mol Med ; 52(4)2023 Oct.
Article in English | MEDLINE | ID: mdl-37594116

ABSTRACT

Preeclampsia (PE) is a major complication of pregnancy with an incidence rate of 2­8% and is a leading cause of maternal mortality and morbidity. The various consequences of severe preeclampsia for the fetus, neonate and child include intrauterine growth retardation (IUGR), fetal hypoxia, oligohydramnios, intrauterine fetal demise, increased perinatal mortality and morbidity, neurodevelopmental disorders and even irreversible brain damage (cerebral palsy). A number of studies have demonstrated that differences in maternal serum concentrations of angiogenic factors between preeclampsia and normotensive pregnancies can be used as biomarkers, either alone or in combination with other markers, to predict the development of PE. The presence in the maternal circulation of two proteins of placental origin, placental growth factor (PlGF) and soluble fms­like tyrosine kinase 1 (sFlt­1), has been shown to be of clinical value, as the sFlt­1/PlGF ratio appears to be the optimal predictive tool for the development of PE. The measurement of their concentration in maternal serum in screening models, serves as predictive marker for the development of PE or IUGR later in gestation. However, further research is required to improve its clinical applicability and provide guidelines for its use worldwide to achieve more consistent clinical management of women with PE.


Subject(s)
Pre-Eclampsia , Female , Humans , Infant, Newborn , Pregnancy , Fetal Growth Retardation , Placenta , Placenta Growth Factor , Pre-Eclampsia/diagnosis
2.
Biomed Rep ; 7(2): 115-122, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28804622

ABSTRACT

Human placental growth hormone (PGH), encoded by the growth hormone (GH) variant gene on chromosome 17, is expressed in the syncytiotrophoblast and extravillous cytotrophoblast layers of the human placenta. Its maternal serum levels increase throughout pregnancy, and gradually replaces the pulsatile secreted pituitary GH. PGH is also detectable in cord blood and in the amniotic fluid. This placental-origin hormone stimulates glyconeogenesis, lipolysis and anabolism in maternal organs, and influences fetal growth, placental development and maternal adaptation to pregnancy. The majority of these actions are performed indirectly by regulating maternal insulin-like growth factor-I levels, while the extravillous trophoblast involvement indicates a direct effect on placental development, as it stimulates trophoblast invasiveness and function via a potential combination of autocrine and paracrine mechanisms. The current review focuses on the role of PGH in fetal growth. In addition, the association of PGH alterations in maternal circulation and placental expression in pregnancy complications associated with abnormal fetal growth is briefly reviewed.

SELECTION OF CITATIONS
SEARCH DETAIL
...