Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(28): 72336-72353, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37166732

ABSTRACT

Increased use of nano-cerium oxide (nCeO2) in an array of industrial applications has raised environmental concerns due to potential increased loadings to the soil environment. This research investigated the potential adverse effects of nCeO2 (10-30 nm) on the soil microbial community in two exposure scenarios: direct application to soil, and indirect application to soil through chemical spiking of biosolids, followed by mixing into soil. Total Ce in test soils without, and with biosolids amendment, ranged from 44 to 770, and 73 to 664 mg Ce kg-1 soil, respectively. In order to help distinguish whether observed effects were elicited by the solid-phase colloids or the activity of dissolved Ce, a soluble Ce salt (Ce (NO3)3) treatment was included in select assays. A suite of tests was used to investigate effects on critical processes: microbial growth (heterotrophic plate count), microbial activity (organic matter (OM) decomposition, enzyme activity and, nitrification) and diversity (structural and functional). Although results showed significant inhibition on microbial growth in soil without biosolids amendment at ≥ 156 mg Ce kg-1 soil by week 5, these results were inconsistent and non-significant thereafter. In general, nCeO2 showed no evidence of consistent adverse effects on OM decomposition, nitrification, soil enzyme activities and functional diversity. Leucine aminopeptidase showed significant (p< 0.05) stimulatory effects over time at ≥ 44 mg Ce kg-1 in soils without biosolids, which was not observed in soils with biosolids amendment. The lack of inhibitory effects of nCeO2 may be attributed to its low solubility; Ce in soil extracts (0.01 M CaCl2) were all below detection (< 0.003 mg kg-1) in the nCeO2-spiked soils, but detectable in the Ce (NO3)3 samples. In contrast, soluble Ce at 359 mg Ce kg-1 showed a significant reduction in OM decomposition and effects on microbial genomic diversity based on the 16S rDNA data in soils with and without biosolids amendment (359 and 690 mg Ce kg-1). The nCeO2 behaviour and effects information described herein are expected to help fulfill data gaps for the characterization of this priority nanomaterial.


Subject(s)
Cerium , Nanoparticles , Soil Pollutants , Biosolids , Soil/chemistry , Nanoparticles/chemistry , Cerium/chemistry , Soil Pollutants/analysis
2.
Ecotoxicol Environ Saf ; 217: 112222, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33895496

ABSTRACT

The fate, toxicity and bioaccumulation of copper oxide nanoparticles (nCuO) was investigated in soil, with and without biosolids amendment, through chronic exposures using the earthworm, Eisenia andrei, and the collembolan, Folsomia candida. The effects of copper sulphate (CuSO4) were included so as to compare the behavior of nCuO to a readily soluble counterpart. The fate of nCuO was evaluated through characterization of dissolved and nano-particulate fractions (via single particle ICP-MS) as well as extractable Cu2+ throughout the duration of select tests. Neither Cu form was particularly toxic to F. candida, but effects on E. andrei reproduction were significant in all treatments (IC50 range: 98 - 149 mg Cu kg-1 dry soil). There were no significant differences in toxicity between the Cu forms, nor in extractable Cu2+ activities, indicative that particle dissolution within the soil and, subsequent activity of Cu2+ was likely the primary mode of toxicity in the nCuO exposures. The presence of biosolids did not significantly alter toxicity of nCuO, but did affect Cu2+ activity over time. Bioaccumulation of total Cu in E. andrei when exposed to nCuO (kinetic bioaccumulation factor (BAFk): 0.80 with biosolids and 0.81 without) was lower than exposure to CuSO4 (BAFk: 2.31 with biosolids and 1.12 without). Enhanced dark-field hyperspectral imaging showed accumulation of nCuO along the epidermis and gut of E. andrei, with trace amounts observed in muscle and chloragogenous tissue, providing evidence of nCuO translocation within the organism. The present study demonstrates that the current risk assessment approach for trace metals in the environment, based on substance solubility and bioavailability of the dissolved free ion, are applicable for nCuO exposure to soil invertebrates, but that the rate of particle dissolution in different soil environments is an important factor for consideration.


Subject(s)
Biosolids , Copper Sulfate/toxicity , Copper/toxicity , Invertebrates/physiology , Soil Pollutants/toxicity , Animals , Arthropods , Bioaccumulation , Biological Availability , Nanoparticles , Oligochaeta/drug effects , Oxides/pharmacology , Soil , Soil Pollutants/analysis
3.
Environ Toxicol Chem ; 36(10): 2756-2765, 2017 10.
Article in English | MEDLINE | ID: mdl-28440581

ABSTRACT

The use of engineered silver nanoparticles (AgNPs) is widespread, with expected release to the terrestrial environment through the application of biosolids onto agricultural lands. The toxicity of AgNPs and silver nitrate (AgNO3 ; as ionic Ag+ ) to plant (Elymus lanceolatus and Trifolium pratense) and soil invertebrate (Eisenia andrei and Folsomia candida) species was assessed using Ag-amended biosolids applied to a natural sandy loam soil. Bioavailable Ag+ in soil samples was estimated using an ion-exchange technique applied to KNO3 soil extracts, whereas exposure to dispersible AgNPs was verified by single-particle inductively coupled plasma-mass spectrometry and transmission electron microscopy-energy dispersive X-ray spectroscopy analysis. Greater toxicity to plant growth and earthworm reproduction was observed in AgNP exposures relative to those of AgNO3 , whereas no difference in toxicity was observed for F. candida reproduction. Transformation products in the AgNP-biosolids exposures resulted in larger pools of extractable Ag+ than those from AgNO3 -biosolids exposures, at similar total Ag soil concentrations. The results of the present study reveal intrinsic differences in the behavior and bioavailability of the 2 different forms of Ag within the biosolids-soils pathway. The present study demonstrates how analytical methods that target biologically relevant fractions can be used to advance the understanding of AgNP behavior and toxicity in terrestrial environments. Environ Toxicol Chem 2017;36:2756-2765. © 2017 Crown in the Right of Canada. Published Wiley Periodicals Inc., on behalf of SETAC.


Subject(s)
Arthropods/drug effects , Metal Nanoparticles/toxicity , Oligochaeta/drug effects , Silver Nitrate/toxicity , Silver/chemistry , Soil/chemistry , Animals , Arthropods/metabolism , Elymus/drug effects , Elymus/growth & development , Ions/chemistry , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission , Oligochaeta/metabolism , Reproduction/drug effects , Seedlings/drug effects , Silver Nitrate/chemistry , Soil Pollutants/toxicity , Toxicity Tests , Trifolium/drug effects , Trifolium/growth & development
4.
Anal Chem ; 89(4): 2505-2513, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28192905

ABSTRACT

The lack of an efficient and standardized method to disperse soil particles and quantitatively subsample the nanoparticulate fraction for characterization analyses is hindering progress in assessing the fate and toxicity of metallic engineered nanomaterials in the soil environment. This study investigates various soil extraction and extract preparation techniques for their ability to remove nanoparticulate Ag from a field soil amended with biosolids contaminated with engineered silver nanoparticles (AgNPs), while presenting a suitable suspension for quantitative single-particle inductively coupled plasma mass spectroscopy (SP-ICP-MS) analysis. Extraction parameters investigated included reagent type (water, NaNO3, KNO3, tetrasodium pyrophosphate (TSPP), tetramethylammonium hydroxide (TMAH)), soil-to-reagent ratio, homogenization techniques as well as procedures commonly used to separate nanoparticles from larger colloids prior to analysis (filtration, centrifugation, and sedimentation). We assessed the efficacy of the extraction procedure by testing for the occurrence of potential procedural artifacts (dissolution, agglomeration) using a dissolved/particulate Ag mass ratio and by monitoring the amount of Ag mass in discrete particles. The optimal method employed 2.5 mM TSPP used in a 1:100 (m/v) soil-to-reagent ratio, with ultrasonication to enhance particle dispersion and sedimentation to settle out the micrometer-sized particles. A spiked-sample recovery analysis shows that 96% ± 2% of the total Ag mass added as engineered AgNP is recovered, which includes the recovery of 84.1% of the particles added, while particle recovery in a spiked method blank is ∼100%, indicating that both the extraction and settling procedure have a minimal effect on driving transformation processes. A soil dilution experiment showed that the method extracted a consistent proportion of nanoparticulate Ag (9.2% ± 1.4% of the total Ag) in samples containing 100%, 50%, 25%, and 10% portions of the AgNP-contaminated test soil. The nanoparticulate Ag extracted by this method represents the upper limit of the potentially dispersible nanoparticulate fraction, thus providing a benchmark with which to make quantitative comparisons, while presenting a suspension suitable for a myriad of other characterization analyses.

5.
Anal Chem ; 88(20): 9908-9914, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27629046

ABSTRACT

There is an increasing interest to use single particle-inductively coupled plasma mass spectroscopy (SP-ICPMS) to help quantify exposure to engineered nanoparticles, and their transformation products, released into the environment. Hindering the use of this analytical technique for environmental samples is the presence of high levels of dissolved analyte which impedes resolution of the particle signal from the dissolved. While sample dilution is often necessary to achieve the low analyte concentrations necessary for SP-ICPMS analysis, and to reduce the occurrence of matrix effects on the analyte signal, it is used here to also reduce the dissolved signal relative to the particulate, while maintaining a matrix chemistry that promotes particle stability. We propose a simple, systematic dilution series approach where by the first dilution is used to quantify the dissolved analyte, the second is used to optimize the particle signal, and the third is used as an analytical quality control. Using simple suspensions of well characterized Au and Ag nanoparticles spiked with the dissolved analyte form, as well as suspensions of complex environmental media (i.e., extracts from soils previously contaminated with engineered silver nanoparticles), we show how this dilution series technique improves resolution of the particle signal which in turn improves the accuracy of particle counts, quantification of particulate mass and determination of particle size. The technique proposed here is meant to offer a systematic and reproducible approach to the SP-ICPMS analysis of environmental samples and improve the quality and consistency of data generated from this relatively new analytical tool.

6.
Nanotoxicology ; 10(8): 1144-51, 2016 10.
Article in English | MEDLINE | ID: mdl-27108659

ABSTRACT

Nanomaterials are increasingly used in a wide range of products, leading to growing concern of their environmental fate. In order to understand the fate and effects of silver nanoparticles in the soil environment, a suite of toxicity tests including: plant growth with Elymus lanceolatus (northern wheatgrass) and Trifolium pratense (red clover); collembolan survival and reproduction (Folsomia candida); and earthworm avoidance, survival and reproduction (Eisenia andrei) was conducted. The effect of silver nanoparticles (AgNP) was compared with the effect of ionic silver (as AgNO3) in two agricultural field soils (a sandy loam and a silt loam). Lethal (LC50) or sub lethal (IC50) effect levels are presented for all endpoints and demonstrate that in most cases AgNO3 (i.e. ionic silver) was found to be more toxic than the AgNP across test species. The difference in effects observed between the two forms of silver varied based on test species, endpoint and soil type. In tests that were conducted across different soil types, organisms in the sandier soil had a greater response to the Ag (ionic and nano) than those in soil with a high silt content. Earthworms (avoidance behavior and reproduction) were the most sensitive to both AgNP and AgNO3, while plant emergence was the least sensitive endpoint to both forms of Ag. The use of a test battery approach using natural field soils demonstrates the need to better quantify the dissolution and transformation products of nanomaterials in order to understand the fate and effects of these materials in the soil environment.


Subject(s)
Metal Nanoparticles/toxicity , Silver Nitrate/toxicity , Silver/toxicity , Soil Pollutants/toxicity , Animals , Arthropods/drug effects , Arthropods/physiology , Elymus/drug effects , Elymus/growth & development , Ions , Metal Nanoparticles/chemistry , Oligochaeta/drug effects , Oligochaeta/physiology , Particle Size , Reproduction/drug effects , Silver/chemistry , Silver Nitrate/chemistry , Soil/chemistry , Soil Pollutants/chemistry , Surface Properties , Toxicity Tests , Trifolium/drug effects , Trifolium/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...