Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293295

ABSTRACT

We report on the novel heterometallic quaternary sulfides SrLnCuS3 (Ln = La, Nd, Tm), obtained as both single crystals and powdered samples. The structures of both the single crystal and powdered samples of SrLaCuS3 and SrNdCuS3 belong to the orthorhombic space group Pnma but are of different structural types, while both samples of SrTmCuS3 crystallize in the orthorhombic space group Cmcm with the structural type KZrCuS3. Three-dimensional crystal structures of SrLaCuS3 and SrNdCuS3 are formed from the (Sr/Ln)S7 capped trigonal prisms and CuS4 tetrahedra. In SrLaCuS3, alternating 2D layers are stacked, while the main backbone of the structure of SrNdCuS3 is a polymeric 3D framework [(Sr/Ln)S7]n, strengthened by 1D polymeric chains (CuS4)n with 1D channels, filled by the other Sr2+/Ln3+ cations, which, in turn, form 1D dimeric ribbons. A 3D crystal structure of SrTmCuS3 is constructed from the SrS6 trigonal prisms, TmS6 octahedra and CuS4 tetrahedra. The latter two polyhedra are packed together into 2D layers, which are separated by 1D chains (SrS6)n and 1D free channels. In both crystal structures of SrLaCuS3 obtained in this work, the crystallographic positions of strontium and lanthanum were partially mixed, while only in the structure of SrNdCuS3, solved from the powder X-ray diffraction data, were the crystallographic positions of strontium and neodymium partially mixed. Band gaps of SrLnCuS3 (Ln = La, Nd, Tm) were found to be 1.86, 1.94 and 2.57 eV, respectively. Both SrNdCuS3 and SrTmCuS3 were found to be paramagnetic at 20-300 K, with the experimental magnetic characteristics being in good agreement with the corresponding calculated parameters.


Subject(s)
Lanthanoid Series Elements , Lanthanoid Series Elements/chemistry , Crystallography, X-Ray , Sulfides , Neodymium , Lanthanum , Powders , Cations/chemistry , Strontium
2.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163428

ABSTRACT

In this work, we report on the synthesis, in-depth crystal structure studies as well as optical and magnetic properties of newly synthesized heterometallic quaternary selenides of the Eu+2Ln+3Cu+1Se3 composition. Crystal structures of the obtained compounds were refined by the derivative difference minimization (DDM) method from the powder X-ray diffraction data. The structures are found to belong to orthorhombic space groups Pnma (structure type Ba2MnS3 for EuLaCuSe3 and structure type Eu2CuS3 for EuLnCuSe3, where Ln = Sm, Gd, Tb, Dy, Ho and Y) and Cmcm (structure type KZrCuS3 for EuLnCuSe3, where Ln = Tm, Yb and Lu). Space groups Pnma and Cmcm were delimited based on the tolerance factor t', and vibrational spectroscopy additionally confirmed the formation of three structural types. With a decrease in the ionic radius of Ln3+ in the reported structures, the distortion of the (LnCuSe3) layers decreases, and a gradual formation of the more symmetric structure occurs in the sequence Ba2MnS3 → Eu2CuS3 → KZrCuS3. According to magnetic studies, compounds EuLnCuSe3 (Ln = Tb, Dy, Ho and Tm) each exhibit ferrimagnetic properties with transition temperatures ranging from 4.7 to 6.3 K. A negative magnetization effect is observed for compound EuHoCuSe3 at temperatures below 4.8 K. The magnetic properties of the discussed selenides and isostructural sulfides were compared. The direct optical band gaps for EuLnCuSe3, subtracted from the corresponding diffuse reflectance spectra, were found to be 1.87-2.09 eV. Deviation between experimental and calculated band gaps is ascribed to lower d states of Eu2+ in the crystal field of EuLnCuSe3, while anomalous narrowing of the band gap of EuYbCuSe3 is explained by the low-lying charge-transfer state. Ab initio calculations of the crystal structures, elastic properties and phonon spectra of the reported compounds were performed.


Subject(s)
Lanthanoid Series Elements/chemistry , Organometallic Compounds/chemical synthesis , Selenium/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry , Powder Diffraction , X-Ray Diffraction
3.
ACS Omega ; 6(11): 7533-7543, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33778265

ABSTRACT

Valleriite is of interest as a mineral source of basic and precious metals and as an unusual material composed of two-dimensional (2D) Fe-Cu sulfide and magnesium hydroxide layers, whose characteristics are still very poorly understood. Here, the mineral samples of two types with about 50% of valleriites from Noril'sk ore provenance, Russia, were examined using Cu K- and Fe K-edge X-ray absorption fine structure (XAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS), 57Fe Mössbauer spectroscopy, and magnetic measurements. The Cu K X-ray absorption near-edge structures (XANES) spectra resemble those of chalcopyrite, however, with a higher electron density at Cu+ centers and essentially differ from those of bornite Cu5FeS4; the Fe K-edge was less informative because of accompanying oxidized Fe-containing phases. The post-edge XANES and extended XAFS (EXAFS) analysis reveal differences in the bond lengths, e.g., additional metal-metal distances in valleriites as compared with chalcopyrite. The XPS spectra confirmed the Cu+ and Fe3+ state in the sulfide sheets and suggest that they are in electron equilibrium with (Mg, Al) hydroxide layers. Mössbauer spectra measured at room temperature comprise central doublets of paramagnetic Fe3+, which decreased at 78 K and almost disappeared at 4.2 K, producing a series of hyperfine Zeeman sextets due to internal magnetic fields arising in valleriites. Magnetic measurements do not reveal antiferromagnetic transitions known for bornite. The specific structure and properties of valleriite are discussed in particular as a platform for composites of the 2D transition metal sulfide and hydroxide (mono)layers stacked by the electrical charges, promising for a variety of applications.

4.
Molecules ; 25(6)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178469

ABSTRACT

The structural, magnetic, electrical, and dilatation properties of the rare-earth NdCoO3 and SmCoO3 cobaltites were investigated. Their comparative analysis was carried out and the effect of multiplicity fluctuations on physical properties of the studied cobaltites was considered. Correlations between the spin state change of cobalt ions and the temperature dependence anomalies of the lattice parameters, magnetic susceptibility, volume thermal expansion coefficient, and electrical resistance have been revealed. A comparison of the results with well-studied GdCoO3 allows one to single out both the general tendencies inherent in all rare-earth cobaltites taking into account the lanthanide contraction and peculiar properties of the samples containing Nd and Sm.


Subject(s)
Cobalt/chemistry , Molecular Structure , Neodymium/chemistry , Oxides/chemistry , Samarium/chemistry , Crystallography, X-Ray , Electromagnetic Phenomena , Ions/chemistry , Magnetics
SELECTION OF CITATIONS
SEARCH DETAIL
...