Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Nature ; 626(8000): 799-807, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326615

ABSTRACT

Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge1-3. For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway1-6. However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1, are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases.


Subject(s)
Coronary Artery Disease , Endothelial Cells , Genome-Wide Association Study , Hemangioma, Cavernous, Central Nervous System , Humans , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Genetic Predisposition to Disease/genetics , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Polymorphism, Single Nucleotide , Epigenomics , Signal Transduction/genetics , Multifactorial Inheritance
2.
Nat Med ; 29(6): 1540-1549, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37248299

ABSTRACT

Preeclampsia and gestational hypertension are common pregnancy complications associated with adverse maternal and child outcomes. Current tools for prediction, prevention and treatment are limited. Here we tested the association of maternal DNA sequence variants with preeclampsia in 20,064 cases and 703,117 control individuals and with gestational hypertension in 11,027 cases and 412,788 control individuals across discovery and follow-up cohorts using multi-ancestry meta-analysis. Altogether, we identified 18 independent loci associated with preeclampsia/eclampsia and/or gestational hypertension, 12 of which are new (for example, MTHFR-CLCN6, WNT3A, NPR3, PGR and RGL3), including two loci (PLCE1 and FURIN) identified in the multitrait analysis. Identified loci highlight the role of natriuretic peptide signaling, angiogenesis, renal glomerular function, trophoblast development and immune dysregulation. We derived genome-wide polygenic risk scores that predicted preeclampsia/eclampsia and gestational hypertension in external cohorts, independent of clinical risk factors, and reclassified eligibility for low-dose aspirin to prevent preeclampsia. Collectively, these findings provide mechanistic insights into the hypertensive disorders of pregnancy and have the potential to advance pregnancy risk stratification.


Subject(s)
Eclampsia , Hypertension, Pregnancy-Induced , Hypertension , Pre-Eclampsia , Pregnancy , Female , Child , Humans , Hypertension, Pregnancy-Induced/genetics , Pre-Eclampsia/genetics , Pre-Eclampsia/prevention & control , Aspirin , Risk Factors
3.
Atherosclerosis ; 350: 9-18, 2022 06.
Article in English | MEDLINE | ID: mdl-35462240

ABSTRACT

BACKGROUND AND AIMS: Chronic vascular endothelial inflammation predisposes to atherosclerosis; however, the cell-autonomous roles for endothelial-expressing microRNAs (miRNAs) are poorly understood in this process. MiR-181b is expressed in several cellular constituents relevant to lesion formation. The aim of this study is to examine the role of genetic deficiency of the miR-181b locus in endothelial cells during atherogenesis. METHODS AND RESULTS: Using a proprotein convertase subtilisin/kexin type 9 (PCSK9)-induced atherosclerosis mouse model, we demonstrated that endothelial cell (EC)-specific deletion of miR-181a2b2 significantly promoted atherosclerotic lesion formation, cell adhesion molecule expression, and the influx of lesional macrophages in the vessel wall. Yet, endothelium deletion of miR-181a2b2 did not affect body weight, lipid metabolism, anti-inflammatory Ly6Clow or the pro-inflammatory Ly6Cinterm and Ly6Chigh fractions in circulating peripheral blood mononuclear cells (PBMCs), and pro-inflammatory or anti-inflammatory mediators in both bone marrow (BM) and PBMCs. Mechanistically, bulk RNA-seq and gene set enrichment analysis of ECs enriched from the aortic arch intima, as well as single cell RNA-seq from atherosclerotic lesions, revealed that endothelial miR-181a2b2 serves as a critical regulatory hub in controlling endothelial inflammation, cell adhesion, cell cycle, and immune response during atherosclerosis. CONCLUSIONS: Our study establishes that deficiency of a miRNA specifically in the vascular endothelium is sufficient to profoundly impact atherogenesis. Endothelial miR-181a2b2 deficiency regulates multiple key pathways related to endothelial inflammation, cell adhesion, cell cycle, and immune response involved in the development of atherosclerosis.


Subject(s)
Atherosclerosis , MicroRNAs , Animals , Atherosclerosis/pathology , Endothelial Cells/metabolism , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Proprotein Convertase 9/metabolism
4.
Nat Genet ; 54(1): 40-51, 2022 01.
Article in English | MEDLINE | ID: mdl-34837083

ABSTRACT

Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden death. We trained a deep learning model to evaluate the dimensions of the ascending and descending thoracic aorta in 4.6 million cardiac magnetic resonance images from the UK Biobank. We then conducted genome-wide association studies in 39,688 individuals, identifying 82 loci associated with ascending and 47 with descending thoracic aortic diameter, of which 14 loci overlapped. Transcriptome-wide analyses, rare-variant burden tests and human aortic single nucleus RNA sequencing prioritized genes including SVIL, which was strongly associated with descending aortic diameter. A polygenic score for ascending aortic diameter was associated with thoracic aortic aneurysm in 385,621 UK Biobank participants (hazard ratio = 1.43 per s.d., confidence interval 1.32-1.54, P = 3.3 × 10-20). Our results illustrate the potential for rapidly defining quantitative traits with deep learning, an approach that can be broadly applied to biomedical images.


Subject(s)
Aorta, Thoracic/anatomy & histology , Deep Learning , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Adult , Aged , Aorta, Thoracic/pathology , Aortic Aneurysm/genetics , Aortic Aneurysm/pathology , Biological Variation, Population , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Quantitative Trait Loci , Transcriptome
5.
Curr Protoc ; 1(11): e291, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34748284

ABSTRACT

Genome editing of primary human cells with CRISPR-Cas9 is a powerful tool to study gene function. For many cell types, there are efficient protocols for editing with optimized plasmids for Cas9 and sgRNA expression. Vascular cells, however, remain refractory to plasmid-based delivery of CRISPR machinery for in vitro genome editing due to low transfection efficiency, poor expression of the Cas9 machinery, and toxic effects of the selection antibiotics. Here, we describe a method for high-efficiency editing of primary human vascular cells in vitro using nucleofection for direct delivery of sgRNA:Cas9-NLS ribonucleoprotein complexes. This method is more rapid and its high editing efficiency eliminates the need for additional selection steps. The edited cells can be employed in diverse applications, such as gene expression measurement or functional assays to assess various genetic perturbation effects in vitro. This method proves effective in vascular cells that are refractory to standard genome manipulation techniques using viral plasmid delivery. We anticipate that this technique will be applied to other non-vascular cell types that face similar barriers to efficient genome editing. © 2021 Wiley Periodicals LLC. Basic Protocol: CRISPR-Cas9 genome editing of primary human vascular cells in vitro.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Gene Expression , Humans , Plasmids , Transfection
7.
Am J Respir Crit Care Med ; 204(12): 1433-1451, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34550870

ABSTRACT

Rationale: Mechanical signaling through cell-matrix interactions plays a major role in progressive vascular remodeling in pulmonary arterial hypertension (PAH). MMP-8 (matrix metalloproteinase-8) is an interstitial collagenase involved in regulating inflammation and fibrosis of the lung and systemic vasculature, but its role in PAH pathogenesis remains unexplored. Objectives: To evaluate MMP-8 as a modulator of pathogenic mechanical signaling in PAH. Methods: MMP-8 levels were measured in plasma from patients with pulmonary hypertension (PH) and controls by ELISA. MMP-8 vascular expression was examined in lung tissue from patients with PAH and rodent models of PH. MMP-8-/- and MMP-8+/+ mice were exposed to normobaric hypoxia or normoxia for 4-8 weeks. PH severity was evaluated by right ventricular systolic pressure, echocardiography, pulmonary artery morphometry, and immunostaining. Proliferation, migration, matrix component expression, and mechanical signaling were assessed in MMP-8-/- and MMP-8+/+ pulmonary artery smooth muscle cells (PASMCs). Measurements and Main Results: MMP-8 expression was significantly increased in plasma and pulmonary arteries of patients with PH compared with controls and induced in the pulmonary vasculature in rodent PH models. Hypoxia-exposed MMP-8-/- mice had significant mortality, increased right ventricular systolic pressure, severe right ventricular dysfunction, and exaggerated vascular remodeling compared with MMP-8+/+ mice. MMP-8-/- PASMCs demonstrated exaggerated proliferation and migration mediated by altered matrix protein expression, elevated integrin-ß3 levels, and induction of FAK (focal adhesion kinase) and downstream YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif) activity. Conclusions: MMP-8 is a novel protective factor upregulated in the pulmonary vasculature during PAH pathogenesis. MMP-8 opposes pathologic mechanobiological feedback by altering matrix composition and disrupting integrin-ß3/FAK and YAP/TAZ-dependent mechanical signaling in PASMCs.


Subject(s)
Matrix Metalloproteinase 8/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/metabolism , Adult , Aged , Animals , Biomarkers/metabolism , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Matrix Metalloproteinase 8/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/prevention & control , Pulmonary Artery/pathology , Rats , Rats, Sprague-Dawley , Up-Regulation , Vascular Remodeling
8.
Nature ; 595(7865): 107-113, 2021 07.
Article in English | MEDLINE | ID: mdl-33915569

ABSTRACT

COVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.


Subject(s)
COVID-19/pathology , COVID-19/virology , Kidney/pathology , Liver/pathology , Lung/pathology , Myocardium/pathology , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , Atlases as Topic , Autopsy , Biological Specimen Banks , COVID-19/genetics , COVID-19/immunology , Endothelial Cells , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Fibroblasts , Genome-Wide Association Study , Heart/virology , Humans , Inflammation/pathology , Inflammation/virology , Kidney/virology , Liver/virology , Lung/virology , Male , Middle Aged , Organ Specificity , Phagocytes , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , RNA, Viral/analysis , Regeneration , SARS-CoV-2/immunology , Single-Cell Analysis , Viral Load
9.
bioRxiv ; 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33655247

ABSTRACT

The SARS-CoV-2 pandemic has caused over 1 million deaths globally, mostly due to acute lung injury and acute respiratory distress syndrome, or direct complications resulting in multiple-organ failures. Little is known about the host tissue immune and cellular responses associated with COVID-19 infection, symptoms, and lethality. To address this, we collected tissues from 11 organs during the clinical autopsy of 17 individuals who succumbed to COVID-19, resulting in a tissue bank of approximately 420 specimens. We generated comprehensive cellular maps capturing COVID-19 biology related to patients' demise through single-cell and single-nucleus RNA-Seq of lung, kidney, liver and heart tissues, and further contextualized our findings through spatial RNA profiling of distinct lung regions. We developed a computational framework that incorporates removal of ambient RNA and automated cell type annotation to facilitate comparison with other healthy and diseased tissue atlases. In the lung, we uncovered significantly altered transcriptional programs within the epithelial, immune, and stromal compartments and cell intrinsic changes in multiple cell types relative to lung tissue from healthy controls. We observed evidence of: alveolar type 2 (AT2) differentiation replacing depleted alveolar type 1 (AT1) lung epithelial cells, as previously seen in fibrosis; a concomitant increase in myofibroblasts reflective of defective tissue repair; and, putative TP63+ intrapulmonary basal-like progenitor (IPBLP) cells, similar to cells identified in H1N1 influenza, that may serve as an emergency cellular reserve for severely damaged alveoli. Together, these findings suggest the activation and failure of multiple avenues for regeneration of the epithelium in these terminal lungs. SARS-CoV-2 RNA reads were enriched in lung mononuclear phagocytic cells and endothelial cells, and these cells expressed distinct host response transcriptional programs. We corroborated the compositional and transcriptional changes in lung tissue through spatial analysis of RNA profiles in situ and distinguished unique tissue host responses between regions with and without viral RNA, and in COVID-19 donor tissues relative to healthy lung. Finally, we analyzed genetic regions implicated in COVID-19 GWAS with transcriptomic data to implicate specific cell types and genes associated with disease severity. Overall, our COVID-19 cell atlas is a foundational dataset to better understand the biological impact of SARS-CoV-2 infection across the human body and empowers the identification of new therapeutic interventions and prevention strategies.

10.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L728-L741, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32877223

ABSTRACT

Airway epithelial homeostasis is under constant threat due to continuous exposure to the external environment, and abnormally robust sensitivity to external stimuli is critical to the development of airway diseases, including asthma. Ku is a key nonhomologous end-joining DNA repair protein with diverse cellular functions such as VDJ recombination and telomere length maintenance. Here, we show a novel function of Ku in alleviating features of allergic airway inflammation via the regulation of mitochondrial and endoplasmic reticulum (ER) stress. We first determined that airway epithelial cells derived from both asthmatic lungs and murine asthma models demonstrate increased expression of 8-hydroxy-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. Ku protein expression was dramatically reduced in the bronchial epithelium of patients with asthma as well as in human bronchial epithelial cells exposed to oxidative stress. Knockdown of Ku70 or Ku80 in naïve mice elicited mitochondrial collapse or ER stress, leading to bronchial epithelial cell apoptosis and spontaneous development of asthma-like features, including airway hyperresponsiveness, airway inflammation, and subepithelial fibrosis. These findings demonstrate an essential noncanonical role for Ku proteins in asthma pathogenesis, likely via maintenance of organelle homeostasis. This novel function of Ku proteins may also be important in other disease processes associated with organelle stress.


Subject(s)
Epithelial Cells/metabolism , Homeostasis/physiology , Inflammation/prevention & control , Ku Autoantigen/metabolism , Animals , Asthma/pathology , Asthma/prevention & control , Endoplasmic Reticulum Stress/physiology , Epithelial Cells/pathology , Humans , Inflammation/metabolism , Lung/metabolism , Lung/pathology , Mice , Oxidative Stress/physiology , Respiratory Hypersensitivity/pathology
11.
PLoS One ; 15(8): e0237999, 2020.
Article in English | MEDLINE | ID: mdl-32822427

ABSTRACT

Hyper-IgD syndrome (HIDS, OMIM #260920) is a rare autosomal recessive autoinflammatory disorder caused by pathogenic variants in the mevalonate kinase (MVK) gene. HIDS has an incidence of 1:50,000 to 1:5,000, and is thought to be prevalent mainly in northern Europe. Here, we report a case series of HIDS from India, which includes ten patients from six families who presented with a wide spectrum of clinical features such as recurrent fever, oral ulcers, rash, arthritis, recurrent diarrhea, hepatosplenomegaly, and high immunoglobulin levels. Using whole exome sequencing (WES) and/or Sanger capillary sequencing, we identified five distinct genetic variants in the MVK gene from nine patients belonging to six families. The variants were classified as pathogenic or likely pathogenic as per the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines for annotation of sequence variants. Over 70% of patients in the present study had two recurrent mutations in MVK gene i.e. a nonsynonymous variant p.V377I, popularly known as the 'Dutch mutation', along with a splicing variant c.226+2delT in a compound heterozygous form. Identity by descent analysis in two patients with the recurrent variants identified a 6.7 MB long haplotype suggesting a founder effect in the South Indian population. Our analysis suggests that a limited number of variants account for the majority of the patients with HIDS in South India. This has implications in clinical diagnosis, as well as in the development of cost-effective approaches for genetic diagnosis and screening. To our best knowledge, this is the first and most comprehensive case series of clinically and genetically characterized patients with HIDS from India.


Subject(s)
Asian People/genetics , Mevalonate Kinase Deficiency/pathology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Adolescent , Child, Preschool , Female , Gene Deletion , Genetic Association Studies , Haplotypes , Heterozygote , Humans , India , Infant , Male , Mevalonate Kinase Deficiency/genetics , Pedigree , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Polymorphism, Single Nucleotide , Protein Structure, Tertiary , Exome Sequencing
12.
J Proteome Res ; 19(10): 3968-3980, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32786677

ABSTRACT

Population genetic studies highlight a missense variant (G398S) of A1CF that is strongly associated with higher levels of blood triglycerides (TGs) and total cholesterol (TC). Functional analyses suggest that the mutation accelerates the secretion of very low-density lipoprotein (VLDL) from the liver by an unknown mechanism. Here, we used multiomics approaches to interrogate the functional difference between the WT and mutant A1CF. Using metabolomics analyses, we captured the cellular lipid metabolite changes induced by transient expression of the proteins, confirming that the mutant A1CF is able to relieve the TG accumulation induced by WT A1CF. Using a proteomics approach, we obtained the interactomic data of WT and mutant A1CF. Networking analyses show that WT A1CF interacts with three functional protein groups, RNA/mRNA processing, cytosolic translation, and, surprisingly, mitochondrial translation. The mutation diminishes these interactions, especially with the group of mitochondrial translation. Differential analyses show that the WT A1CF-interacting proteins most significantly different from the mutant are those for mitochondrial translation, whereas the most significant interacting proteins with the mutant are those for cytoskeleton and vesicle-mediated transport. RNA-seq analyses validate that the mutant, but not the WT, A1CF increases the expression of the genes responsible for cellular transport processes. On the contrary, WT A1CF affected the expression of mitochondrial matrix proteins and increased cell oxygen consumption. Thus, our studies confirm the previous hypothesis that A1CF plays broader roles in regulating gene expression. The interactions of the mutant A1CF with the vesicle-mediated transport machinery provide mechanistic insight in understanding the increased VLDL secretion in the A1CF mutation carriers.


Subject(s)
Lipid Metabolism , RNA-Binding Proteins , Lipid Metabolism/genetics , Liver/metabolism , RNA Editing , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism
13.
Biochem Biophys Res Commun ; 522(4): 1022-1029, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31813547

ABSTRACT

Genome wide association study for type 2 diabetes discovered TMEM163 as a risk locus. Perturbations in TMEM163 expression was reported to be associated with impaired intracellular zinc homeostasis. Physiological concentration of zinc is instrumental to maintain insulin storage and functionality in pancreatic ß cells. We found abundant TMEM163 expression in human pancreas, both at transcriptional and translational levels. Knockdown of endogenous Tmem163 in MIN6 cells resulted in increased intracellular zinc and total insulin content, coupled with compromised insulin secretion at high glucose stimuli. Furthermore, Tmem163 knockdown led to enhanced cellular glucose uptake. Upon next generation sequencing, one-third of the studied T2D patients were found to have a novel missense variant in TMEM163 gene. Study participants harboring this missense variant displayed a trend of higher glycemic indices. This is the first report on exploring the biological role of TMEM163 in relation to T2D pathophysiology.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Insulin/metabolism , Membrane Proteins/metabolism , Zinc/metabolism , Adult , Animals , Cell Line, Tumor , Exons/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glucose/metabolism , Glucose Transporter Type 2/metabolism , Humans , India , Intracellular Space/metabolism , Loss of Function Mutation/genetics , Male , Membrane Proteins/genetics , Mice , Middle Aged , Mutation, Missense/genetics
14.
Oral Dis ; 26(2): 295-301, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31514257

ABSTRACT

OBJECTIVE: This study systematically aims to evaluate the salivary microbiome in patients with primary Sjögren's syndrome (pSS) using 16S rRNA sequencing approach. METHODS: DNA isolation and 16S rRNA sequencing was performed on saliva of 37 pSS and 35 control (CC) samples on HiSeq 2500 platform. 16S rRNA sequence analysis was performed independently using two popular computational pipelines, QIIME and less operational taxonomic units scripts (LoTuS). RESULTS: There were no significant changes in the alpha diversity between saliva of patients and controls. However, four genera including Bifidobacterium, Lactobacillus, Dialister and Leptotrichia were found to be differential between the two sets, and common between both QIIME and LoTuS analysis pipelines (Fold change of 2 and p < .05). Bifidobacterium, Dialister and Lactobacillus were found to be enriched, while Leptotrichia was significantly depleted in pSS compared to the controls. Exploration of microbial diversity measures (Chao1, observed species and Shannon index) revealed a significant increase in the diversity in patients with renal tubular acidosis. An opposite trend was noted, with depletion of diversity in patients with steroids. CONCLUSION: Our analysis suggests that while no significant changes in the diversity of the salivary microbiome could be observed in Sjögren's syndrome compared to the controls, a set of four genera were significantly and consistently differential in the saliva of patients with pSS. Additionally, a difference in alpha diversity in patients with renal tubular acidosis and those on steroids was observed.


Subject(s)
Bacteria/classification , Microbiota , Saliva/microbiology , Sjogren's Syndrome/microbiology , Acidosis, Renal Tubular/drug therapy , Acidosis, Renal Tubular/microbiology , Adult , Bacteria/genetics , Bacteria/isolation & purification , Case-Control Studies , Female , Humans , Male , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
15.
Circulation ; 140(2): 147-163, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31146585

ABSTRACT

BACKGROUND: The cells that form the arterial wall contribute to multiple vascular diseases. The extent of cellular heterogeneity within these populations has not been fully characterized. Recent advances in single-cell RNA-sequencing make it possible to identify and characterize cellular subpopulations. METHODS: We validate a method for generating a droplet-based single-cell atlas of gene expression in a normal blood vessel. Enzymatic dissociation of 4 whole mouse aortas was followed by single-cell sequencing of >10 000 cells. RESULTS: Clustering analysis of gene expression from aortic cells identified 10 populations of cells representing each of the main arterial cell types: fibroblasts, vascular smooth muscle cells, endothelial cells (ECs), and immune cells, including monocytes, macrophages, and lymphocytes. The most significant cellular heterogeneity was seen in the 3 distinct EC populations. Gene set enrichment analysis of these EC subpopulations identified a lymphatic EC cluster and 2 other populations more specialized in lipoprotein handling, angiogenesis, and extracellular matrix production. These subpopulations persist and exhibit similar changes in gene expression in response to a Western diet. Immunofluorescence for Vcam1 and Cd36 demonstrates regional heterogeneity in EC populations throughout the aorta. CONCLUSIONS: We present a comprehensive single-cell atlas of all cells in the aorta. By integrating expression from >1900 genes per cell, we are better able to characterize cellular heterogeneity compared with conventional approaches. Gene expression signatures identify cell subpopulations with vascular disease-relevant functions.


Subject(s)
Aorta/cytology , Aorta/physiology , Endothelial Cells/physiology , Gene Expression Profiling/methods , Single-Cell Analysis/methods , Animals , Female , Mice , Mice, Inbred C57BL
17.
Sci Rep ; 9(1): 3432, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837568

ABSTRACT

Circular RNAs (circRNAs) are transcript isoforms generated by back-splicing of exons and circularisation of the transcript. Recent genome-wide maps created for circular RNAs in humans and other model organisms have motivated us to explore the repertoire of circular RNAs in zebrafish, a popular model organism. We generated RNA-seq data for five major zebrafish tissues - Blood, Brain, Heart, Gills and Muscle. The repertoire RNA sequence reads left over after reference mapping to linear transcripts were used to identify unique back-spliced exons utilizing a split-mapping algorithm. Our analysis revealed 3,428 novel circRNAs in zebrafish. Further in-depth analysis suggested that majority of the circRNAs were derived from previously well-annotated protein-coding and long noncoding RNA gene loci. In addition, many of the circular RNAs showed extensive tissue specificity. We independently validated a subset of circRNAs using polymerase chain reaction (PCR) and divergent set of primers. Expression analysis using quantitative real time PCR recapitulate selected tissue specificity in the candidates studied. This study provides a comprehensive genome-wide map of circular RNAs in zebrafish tissues.


Subject(s)
Chromosome Mapping , Genome-Wide Association Study , RNA, Circular , Zebrafish/genetics , Animals , Computational Biology/methods , Genetic Loci , Genome-Wide Association Study/methods , High-Throughput Nucleotide Sequencing , Humans , Reproducibility of Results
18.
Methods Mol Biol ; 1912: 77-110, 2019.
Article in English | MEDLINE | ID: mdl-30635891

ABSTRACT

Long noncoding RNAs (lncRNAs) belong to a class of RNA transcripts that do not have the potential to code for proteins. LncRNAs were largely discovered in the transcriptomes of human and several model organisms, using next-generation sequencing (NGS) approaches, which have enabled a comprehensive genome scale annotation of transcripts. LncRNAs are known to have dynamic expression status and have the potential to orchestrate gene regulation at the epigenetic, transcriptional, and posttranscriptional levels. Here we describe the experimental methods involved in the discovery of lncRNAs from the transcriptome of a popular model organism zebrafish (Danio rerio). A structured and well-designed computational analysis pipeline subsequent to the RNA sequencing can be instrumental in revealing the diversity of the lncRNA transcripts. We describe one such computational pipeline used for the discovery of novel lncRNA transcripts in zebrafish. We also detail the validation of the putative novel lncRNA transcripts using qualitative and quantitative assays in zebrafish.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , RNA, Long Noncoding/isolation & purification , Sequence Analysis, RNA/methods , Animals , Computational Biology/instrumentation , Gene Expression Profiling/instrumentation , High-Throughput Nucleotide Sequencing/instrumentation , Models, Animal , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Software , Transcriptome/genetics , Zebrafish
19.
Mitochondrion ; 46: 59-68, 2019 05.
Article in English | MEDLINE | ID: mdl-29486245

ABSTRACT

Mitochondria are organelles involved in a variety of biological functions in the cell, apart from their principal role in generation of ATP, the cellular currency of energy. The mitochondria, in spite of being compact organelles, are capable of performing complex biological functions largely because of the ability to exchange proteins, RNA, chemical metabolites and other biomolecules between cellular compartments. A close network of biomolecular interactions are known to modulate the crosstalk between the mitochondria and the nuclear genome. Apart from the small repertoire of genes encoded by the mitochondrial genome, it is now known that the functionality of the organelle is highly reliant on a number of proteins encoded by the nuclear genome, which localize to the mitochondria. With exceptions to a few anecdotal examples, the transcripts that have the potential to localize to the mitochondria have been poorly studied. We used a deep sequencing approach to identify transcripts encoded by the nuclear genome which localize to the mitoplast in a zebrafish model. We prioritized 292 candidate transcripts of nuclear origin that are potentially localized to the mitochondrial matrix. We experimentally demonstrated that the transcript encoding the nuclear encoded ribosomal protein 11 (Rpl11) localizes to the mitochondria. This study represents a comprehensive analysis of the mitochondrial localization of nuclear encoded transcripts. Our analysis has provided insights into a new layer of biomolecular pathways modulating mitochondrial-nuclear cross-talk. This provides a starting point towards understanding the role of nuclear encoded transcripts that localize to mitochondria and their influence on mitochondrial function.


Subject(s)
Gene Expression Profiling , Mitochondria/chemistry , Mitochondria/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , Animals , High-Throughput Nucleotide Sequencing , Zebrafish
20.
J Exp Biol ; 222(Pt 1)2019 01 10.
Article in English | MEDLINE | ID: mdl-30446534

ABSTRACT

High fecundity, transparent embryos for monitoring the rapid development of organs and the availability of a well-annotated genome has made zebrafish a model organism of choice for developmental biology and neurobiology. This vertebrate model, which is also a favourite in chronobiology studies, shows striking circadian rhythmicity in behaviour. Here, we identify novel genes in the zebrafish genome that are expressed in the zebrafish retina. We further resolve the expression pattern over time and tentatively assign specific novel transcripts to retinal bipolar cells of the inner nuclear layer. Using chemical ablation and free run experiments, we segregate the transcripts that are rhythmic when entrained by light from those that show sustained oscillations in the absence of external cues. The transcripts reported here with rigorous annotation and specific functions in circadian biology provide the groundwork for functional characterization of novel players in the zebrafish retinal clock.


Subject(s)
Circadian Rhythm/physiology , Transcription Factors/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Retina/physiology , Transcription Factors/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...