Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Netw ; 75: 141-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26775132

ABSTRACT

Magnetic sensors are largely used in several engineering areas. Among them, magnetic sensors based on the Giant Magnetoimpedance (GMI) effect are a new family of magnetic sensing devices that have a huge potential for applications involving measurements of ultra-weak magnetic fields. The sensitivity of magnetometers is directly associated with the sensitivity of their sensing elements. The GMI effect is characterized by a large variation of the impedance (magnitude and phase) of a ferromagnetic sample, when subjected to a magnetic field. Recent studies have shown that phase-based GMI magnetometers have the potential to increase the sensitivity by about 100 times. The sensitivity of GMI samples depends on several parameters, such as sample length, external magnetic field, DC level and frequency of the excitation current. However, this dependency is yet to be sufficiently well-modeled in quantitative terms. So, the search for the set of parameters that optimizes the samples sensitivity is usually empirical and very time consuming. This paper deals with this problem by proposing a new neuro-genetic system aimed at maximizing the impedance phase sensitivity of GMI samples. A Multi-Layer Perceptron (MLP) Neural Network is used to model the impedance phase and a Genetic Algorithm uses the information provided by the neural network to determine which set of parameters maximizes the impedance phase sensitivity. The results obtained with a data set composed of four different GMI sample lengths demonstrate that the neuro-genetic system is able to correctly and automatically determine the set of conditioning parameters responsible for maximizing their phase sensitivities.


Subject(s)
Magnetic Phenomena , Models, Genetic , Neural Networks, Computer , Algorithms , Electric Impedance , Magnetometry/methods
2.
Evol Comput ; 8(1): 93-120, 2000.
Article in English | MEDLINE | ID: mdl-10753232

ABSTRACT

This work investigates the application of variable length representation (VLR) evolutionary algorithms (EAs) in the field of Evolutionary Electronics. We propose a number of VLR methodologies that can cope with the main issues of variable length evolutionary systems. These issues include the search for efficient ways of sampling a genome space with varying dimensionalities, the task of balancing accuracy and parsimony of the solutions, and the manipulation of non-coding segments. We compare the performance of three proposed VLR approaches to sample the genome space: Increasing Length Genotypes, Oscillating Length Genotypes, and Uniformly Distributed Initial Population strategies. The advantages of reusing genetic material to replace non-coding segments are also emphasized in this work. It is shown, through examples in both analog and digital electronics, that the variable length genotype's representation is natural to this particular domain of application. A brief discussion on biological genome evolution is also provided.


Subject(s)
Biological Evolution , Electronics/methods , Models, Biological , Algorithms , Computer Simulation , Genetics, Population , Genome , Genotype , Models, Genetic , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...