Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 171: 21-33, 2017 May.
Article in English | MEDLINE | ID: mdl-28161316

ABSTRACT

The Fukushima nuclear accident in 2011 resulted in 137Cs contamination of large areas in northeast Japan. A watershed-scale 137Cs transport model was developed and applied to a forested catchment in Fukushima area. This model considers 137Cs wash-off from vegetation, movement through soils, and transport of dissolved and particulate 137Cs adsorbed to clay, silt and sand. Comparisons between measurements and simulations demonstrated that the model well reproduced 137Cs concentrations in the stream fed from the catchment. Simulations estimated that 0.57 TBq of 137Cs was exported from the catchment between June, 2011 and December, 2014. Transport largely occurred with eroded sediment particles at a ratio of 17:70:13 of clay, silt, and sand. The overall 137Cs reduction ratio by rainfall-runoff wash-off was about 1.6%. Appreciable 137Cs remained in the catchment at the end of 2014. The largest rate of 137Cs reduction by wash-off was simulated to occur in subwatersheds of the upper catchment. However, despite relatively low initial deposition, middle portions of the watershed exported proportionately more 137Cs by rainfall-runoff processes. Simulations indicated that much of the transported 137Cs originates from erosion over hillsides and river banks. These results suggested that areas where 137Cs accumulates with redeposited sediments can be targeted for decontamination and also provided insight into 137Cs transport at the watershed scale to assess risk management and decontamination planning efforts.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive/analysis , Forests , Japan , Radioactive Fallout/analysis , Soil Pollutants, Radioactive/analysis
2.
J Environ Manage ; 136: 16-26, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24548823

ABSTRACT

A three-tiered approach was used to assess erosion risks within the Nakdong River Basin in South Korea and included: (1) a screening based on topography and land use; (2) a lumped parameter analysis using RUSLE; and (3) a detailed analysis using TREX, a fully distributed watershed model. These tiers span a range of spatial and temporal scales, with each tier providing increasing detail and resolution. The first two tiers were applied to the entire Nakdong River Basin and the Naesung Stream watershed was identified as having the highest soil erosion risk and potential for sedimentation problems. For the third tier, the TREX watershed model simulated runoff, channel flow, soil erosion, and stream sediment transport in the Naesung Stream watershed at very high resolution. TREX was calibrated for surface flows and sediment transport, and was used to simulate conditions for a large design storm. Highly erosive areas were identified along ridgelines in several headwater areas, with the northeast area of Songriwon having a particularly high erosion potential. Design storm simulations also indicated that sediment deposition of up to 55 cm could occur.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Rivers/chemistry , Calibration , Databases, Factual , Models, Theoretical , Republic of Korea , Risk Assessment , Soil/chemistry
3.
Environ Sci Technol ; 46(12): 6723-32, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22563808

ABSTRACT

Copper is used as an antimicrobial agent in building materials such as algae-resistant roofing shingles and treated wood products for decks, fences, and utility poles used in urbanized areas. Releases from these materials may pose risks to aquatic and terrestrial organisms. Copper exposures in surface water, sediment, and soil were estimated for a hypothetical urban setting using the TREX watershed model. Drainage and soil characteristics were based on an existing watershed. Urban landscape characteristics were developed from data regarding housing densities and copper use in building materials. This setting provides a spatially distributed, upper-bound assessment scenario. Release rates from algae-resistant shingles and treated wood were defined based on surface area and rainfall. Simulations for the urban landscapes were performed for a 10-year period. Simulation results were used to evaluate exceedences of benchmark concentrations for water, sediment, and soil. For algae-resistant shingles, exposures did not exceed benchmarks in any media. For treated wood, exposures did not exceed sediment and soil benchmarks, and surface water benchmarks were exceeded on 2 days in 10 years. Based on this analysis, copper use as an antimicrobial agent in algae resistant shingles and treated wood is not expected to pose significant adverse environmental risks on an individual use basis.


Subject(s)
Anti-Infective Agents/therapeutic use , Copper/therapeutic use , Environmental Exposure , Urban Population , Risk Assessment , Urbanization
4.
Sci Total Environ ; 404(1): 113-28, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18649925

ABSTRACT

Contaminant releases from upland areas can have adverse water quality and stream ecology impacts. TREX (Two-dimensional, Runoff, Erosion, and Export) is a spatially distributed, physically-based model to simulate chemical transport and fate at the watershed scale. TREX combines surface hydrology and sediment transport features from the CASC2D watershed model with chemical transport features from the WASP/IPX series of water quality models. In addition to surface runoff and sediment transport, TREX simulates: (1) chemical erosion, advection, and deposition; (2) chemical partitioning and phase distribution; and (3) chemical infiltration and redistribution. Floodplain interactions for water, sediment, and chemicals are also simulated. To demonstrate the potential for using TREX to simulate chemical transport at the watershed scale, a screening-level application was developed for the California Gulch watershed mine-waste site in Colorado. Runoff, sediment transport, and metals (Cu, Cd, Zn) transport were simulated for a calibration event and a validation event. The model reproduced measured peak flows, and times to peak at the watershed outlet and three internal locations. Simulated flow volumes were within approximately 10% of measured conditions. Model results were also generally within measured ranges of total suspended solid and metal concentrations. TREX is an appropriate tool for investigating multimedia environmental problems that involve water, soils, and chemical interactions in a spatially distributed manner within a watershed.


Subject(s)
Environmental Monitoring/methods , Industrial Waste , Metals, Heavy/analysis , Water Movements , Water Pollutants, Chemical/analysis , Algorithms , California , Computer Simulation , Geologic Sediments/chemistry , Models, Theoretical , Water Supply/analysis
5.
Environ Sci Technol ; 40(22): 6996-7004, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-17154007

ABSTRACT

The transport and toxicity of metals at the California Gulch, Colorado mine-impacted watershed were simulated with a spatially distributed watershed model. Using a database of observations for the period 1984-2004, hydrology, sediment transport, and metals transport were simulated for a June 2003 calibration event and a September 2003 validation event. Simulated flow volumes were within approximately 10% of observed conditions. Observed ranges of total suspended solids, cadmium, copper, and zinc concentrations were also successfully simulated. The model was then used to simulate the potential impacts of a 1-in-100-year rainfall event. Driven by large flows and corresponding soil and sediment erosion for the 1-in-100-year event, estimated solids and metals export from the watershed is 10,000 metric tons for solids, 215 kg for Cu, 520 kg for Cu, and 15,300 kg for Zn. As expressed by the cumulative criterion unit (CCU) index, metals concentrations far exceed toxic effects thresholds, suggesting a high probability of toxic effects downstream of the gulch. More detailed Zn source analyses suggest that much of the Zn exported from the gulch originates from slag piles adjacent to the lower gulch floodplain and an old mining site located near the head of the lower gulch.


Subject(s)
Metals, Heavy/analysis , Models, Theoretical , Water Pollutants, Chemical/analysis , Colorado , Databases, Factual , Industrial Waste , Mining , Water Movements , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...