Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Divers ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884873

ABSTRACT

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that is now potentially lethal and has a significant detrimental influence on people's daily lives by affecting bone joints. Inflammation plays a vital role in this type of autoimmune disorder. In rheumatoid arthritis, long-term production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) stimulates the immune system against cells in bone joints and helps to develop the pathogenesis of rheumatoid arthritis. So, while treating rheumatoid arthritis, we need to block these kinds of mechanisms. We employed soxhlet extraction, thin-layer chromatography (TLC), and gas chromatography-mass spectroscopy (GC-MS) to analyze the phytocompound information in E. hirta leaves. Furthermore, our research included in vitro investigations using Western blotting and mRNA expression analysis (TNF-α, IL-1ß, IL-6) to affirm the anti-inflammatory effectiveness of our extract. For identifying the lead-like molecules, virtual screening and molecular dynamics simulations were used. TLC results confirmed the presence of phytocompounds in E. hirta crude through spots. The structure elucidation of the phytocompounds was confirmed by the GC-MS chromatogram. The in vitro outcomes collectively underscore the inhibitory influence of E. hirta on cell proliferation and its capacity to attenuate the expression of TNF- α within THP-1 cells. The results of in silico methodologies confirmed six lead-like molecules. We could conclude that phytocompounds from ethanol leaf crude have effective lead-like molecules against the TNF-α.

2.
Front Chem ; 11: 1096177, 2023.
Article in English | MEDLINE | ID: mdl-36778035

ABSTRACT

Introduction: Bioactive molecules from natural sources having contraceptive properties were excellent alternatives for modern hormonal contraceptives. Researchers around the world were working on identifying contraceptive leads targeting the male reproductive system rather than the usual female contraceptives. The lack of proper understanding on male contraceptive protein drug targets leads to insufficient evidence on activities of identified contraceptive compounds. The proteins specific to the male reproductive system and involved in sperm-egg fusion will be an excellent drug target to identify the male non-hormonal, reversible contraceptive leads. Inhibiting sperm hyaluronidase activity by natural non-hormonal compounds will lead to reversible and non-hormonal male contraception. The Aegle marmelos Linn. is one such important medicinal plant with valuable phytocompounds, used traditionally as a potential contraceptive measure. The in vivo experiments on leaf extracts of Aegle marmelos. Linn containing terpenes, sterols, and alkaloids shows prominent contraceptive activities. Moreover, this study explores the potential ability of the leaf extract on inhibiting the sperm hyaluronidase action with additional molecular details on the interaction between sperm hyaluronidases and three phytocompounds such as aegeline, marmin, and marminol. Material and methods: The in vitro hyaluronidase inhibition assay and Computer Assisted Sperm Analysis (CASA) were used to evaluate the male contraceptive properties of the Aegle marmelos Linn. leaf extract. To identify the interaction profile of aegeline, marmin, and marmenol on sperm cell hyaluronidases the in-silico methods such as molecular docking, Non-Covalent Interaction analysis, Molecular dynamics, and Molecular Mechanics Poisson Boltzmann Surface Area were used. Results and discussion: The results of in vitro hyaluronidase inhibition assay and Computer Assisted Sperm Analysis shows the inhibition of hyaluronidase enzymatic activity and reduced sperm activities in the presence of leaf extracts. After incubation with leaf extracts for about 30 minutes time intervals show, the motility drops from progressive to non-progressive and ended up with complete immotile in 100 µg/ml concentration of leaf extract. The results of molecular docking, Non-Covalent Interaction analysis, Molecular dynamics, and Molecular mechanics Poisson Boltzmann Surface Area show that the phytocompounds marmin, and aegeline have the potential ability to inhibit sperm hyaluronidase.

SELECTION OF CITATIONS
SEARCH DETAIL
...