Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 22(6): 1068-1092, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35084420

ABSTRACT

Variations in oxygen levels play key roles in numerous physiological and pathological processes, but are often not properly controlled in in vitro models, introducing a significant bias in experimental outcomes. Recent developments in microfluidic technology have introduced a paradigm shift by providing new opportunities to better mimic physiological and pathological conditions, which is achieved by both regulating and monitoring oxygen levels at the micrometre scale in miniaturized devices. In this review, we first introduce the nature and relevance of oxygen-dependent pathways in both physiological and pathological contexts. Subsequently, we discuss strategies to control oxygen in microfluidic devices, distinguishing between engineering approaches that operate at the device level during its fabrication and chemical approaches that involve the active perfusion of fluids oxygenated at a precise level or supplemented with oxygen-producing or oxygen-scavenging materials. In addition, we discuss readout approaches for monitoring oxygen levels at the cellular and tissue levels, focusing on electrochemical and optical detection schemes for high-resolution measurements directly on-chip. An overview of different applications in which microfluidic devices have been utilized to answer biological research questions is then provided. In the final section, we provide our vision for further technological refinements of oxygen-controlling devices and discuss how these devices can be employed to generate new fundamental insights regarding key scientific problems that call for emulating oxygen levels as encountered in vivo. We conclude by making the case that ultimately emulating physiological or pathological oxygen levels should become a standard feature in all in vitro cell, tissue, and organ models.


Subject(s)
Lab-On-A-Chip Devices , Oxygen , Microfluidics , Oligonucleotide Array Sequence Analysis
2.
Biochim Biophys Acta Gene Regul Mech ; 1864(10): 194749, 2021 10.
Article in English | MEDLINE | ID: mdl-34425241

ABSTRACT

The domain of transcription regulation has been notoriously difficult to annotate in the Gene Ontology, partly because of the intricacies of gene regulation which involve molecular interactions with DNA as well as amongst protein complexes. The molecular function 'transcription coregulator activity' is a part of the biological process 'regulation of transcription, DNA-templated' that occurs in the cellular component 'chromatin'. It can mechanistically link sequence-specific DNA-binding transcription factor (dbTF) regulatory DNA target sites to coactivator and corepressor target sites through the molecular function 'cis-regulatory region sequence-specific DNA binding'. Many questions arise about transcription coregulators (coTF). Here, we asked how many unannotated, putative coregulators can be identified in protein complexes? Therefore, we mined the CORUM and hu.MAP protein complex databases with known and strongly presumed human transcription coregulators. In addition, we trawled the BioGRID and IntAct molecular interaction databases for interactors of the known 1457 human dbTFs annotated by the GREEKC and GO consortia. This yielded 1093 putative transcription factor coregulator complex subunits, of which 954 interact directly with a dbTF. This substantially expands the set of coTFs that could be annotated to 'transcription coregulator activity' and sets the stage for renewed annotation and wet-lab research efforts. To this end, we devised a prioritisation score based on existing GO annotations of already curated transcription coregulators as well as interactome representation. Since all the proteins that we mined are parts of protein complexes, we propose to concomitantly engage in annotation of the putative transcription coregulator-containing complexes in the Complex Portal database.


Subject(s)
DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Base Sequence , DNA/chemistry , Data Mining , Databases, Genetic , Gene Expression Regulation , Humans , Protein Interaction Mapping , Protein Subunits/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...