Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Cancers (Basel) ; 12(9)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967377

ABSTRACT

In this work, we assessed the ability of computerized features of nuclear morphology from diagnostic biopsy images to predict prostate cancer (CaP) progression in active surveillance (AS) patients. Improved risk characterization of AS patients could reduce over-testing of low-risk patients while directing high-risk patients to therapy. A total of 191 (125 progressors, 66 non-progressors) AS patients from a single site were identified using The Johns Hopkins University's (JHU) AS-eligibility criteria. Progression was determined by pathologists at JHU. 30 progressors and 30 non-progressors were randomly selected to create the training cohort D1 (n = 60). The remaining patients comprised the validation cohort D2 (n = 131). Digitized Hematoxylin & Eosin (H&E) biopsies were annotated by a pathologist for CaP regions. Nuclei within the cancer regions were segmented using a watershed method and 216 nuclear features describing position, shape, orientation, and clustering were extracted. Six features associated with disease progression were identified using D1 and then used to train a machine learning classifier. The classifier was validated on D2. The classifier was further compared on a subset of D2 (n = 47) against pro-PSA, an isoform of prostate specific antigen (PSA) more linked with CaP, in predicting progression. Performance was evaluated with area under the curve (AUC). A combination of nuclear spatial arrangement, shape, and disorder features were associated with progression. The classifier using these features yielded an AUC of 0.75 in D2. On the 47 patient subset with pro-PSA measurements, the classifier yielded an AUC of 0.79 compared to an AUC of 0.42 for pro-PSA. Nuclear morphometric features from digitized H&E biopsies predicted progression in AS patients. This may be useful for identifying AS-eligible patients who could benefit from immediate curative therapy. However, additional multi-site validation is needed.

2.
Cancer Rep (Hoboken) ; 3(3): e1237, 2020 06.
Article in English | MEDLINE | ID: mdl-32587951

ABSTRACT

Background: The RNA-binding motif protein 3 (RBM3) has been shown to be up-regulated in several types of cancer, including prostate cancer (PCa), compared to normal tissues. Increased RBM3 nuclear expression has been linked to improved clinical outcomes. Aims: Given that RBM3 has been hypothesized to play a role in critical nuclear functions such as chromatin remodeling, DNA damage response, and other post-transcriptional processes, we sought to: (1) quantify RBM3 protein levels in archival PCa samples; (2) develop a nuclear morphometric model to determine if measures of RBM3 protein levels and nuclear features could be used to predict disease aggressiveness and biochemical recurrence. Methods & Results: This study utilized two tissue microarrays (TMAs) stained for RBM3 that included 80 total cases of PCa stratified by Gleason score. A software-mediated image processing algorithm identified RBM3-positive cancerous nuclei in the TMA samples and calculated twenty-two features quantifying RBM3 expression and nuclear architecture. Multivariate logistic regression (MLR) modeling was performed to determine if RBM3 levels and nuclear structural changes could predict PCa aggressiveness and biochemical recurrence (BCR). Leave-one-out cross validation (LOOCV) was used to provide insight on how the predictive capabilities of the feature set might behave with respect to an independent patient cohort to address issues such as model overfitting. RBM3 expression was found to be significantly downregulated in highly aggressive GS ≥ 8 PCa samples compared to other Gleason scores (P < 0.0001) and significantly down-regulated in recurrent PCa samples compared to non-recurrent samples (P = 0.0377). An eleven-feature nuclear morphometric MLR model accurately identified aggressive PCa, yielding a receiver operating characteristic area under the curve (ROC-AUC) of 0.90 (P < 0.0001) in the raw data set and 0.77 (95% CI: 0.83-0.97) for LOOCV testing. The same eleven-feature model was then used to predict recurrence, yielding a ROC-AUC of 0.92 (P = 0.0004) in the raw data set and 0.76 (95% CI: 0.64-0.87) for LOOCV testing. Conclusions: The RBM3 biomarker alone is a strong prognostic marker for the prediction of aggressive PCa and biochemical recurrence. Further, RBM3 appears to be down-regulated in aggressive and recurrent tumors.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Nucleus/pathology , Neoplasm Recurrence, Local/pathology , Prostatic Neoplasms/pathology , RNA-Binding Proteins/metabolism , Algorithms , Cell Nucleus/metabolism , Cohort Studies , Humans , Male , Neoplasm Grading , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/surgery , Prognosis , Prostatectomy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/surgery , ROC Curve
3.
Breast Cancer Res Treat ; 179(1): 25-35, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31531802

ABSTRACT

PURPOSE: The high mobility group A1 (HMGA1) chromatin remodeling protein is required for metastatic progression and cancer stem cell properties in preclinical breast cancer models, although its role in breast carcinogenesis has remained unclear. To investigate HMGA1 in primary breast cancer, we evaluated immunoreactivity score (IRS) in tumors from a large cohort of Asian women; HMGA1 gene expression was queried from two independent Western cohorts. METHODS: HMGA1 IRS was generated from breast tumors in Korean women as the product of staining intensity (weak = 1, moderate = 2, strong = 3) and percent positive cells (< 5% = 0, 5-30% = 1, 30-60% = 2, > 60% = 3), and stratified into three groups: low (< 3), intermediate (3-6), high (> 6). We assessed HMGA1 and estrogen receptor (ESR1) gene expression from two large databases (TCGA, METABRIC). Overall survival was ascertained from the METABRIC cohort. RESULTS: Among 540 primary tumors from Korean women (181 ER-negative, 359 ER-positive), HMGA1 IRS was < 3 in 89 (16.5%), 3-6 in 215 (39.8%), and > 6 in 236 (43.7%). High HMGA1 IRS was associated with estrogen receptor (ER)-negativity (χ2 = 12.07; P = 0.002) and advanced nuclear grade (χ2 = 12.83; P = 0.012). In two large Western cohorts, the HMGA1 gene was overexpressed in breast cancers compared to non-malignant breast tissue (P < 0.0001), including Asian, African American, and Caucasian subgroups. HMGA1 was highest in ER-negative tumors and there was a strong inverse correlation between HMGA1 and ESR1 gene expression (Pearson r = - 0.60, P < 0.0001). Most importantly, high HMGA1 predicted decreased overall survival (P < 0.0001) for all women with breast cancer and further stratified ER-positive tumors into those with inferior outcomes. CONCLUSIONS: Together, our results suggest that HMGA1 contributes to estrogen-independence, tumor progression, and poor outcomes. Moreover, further studies are warranted to determine whether HMGA1 could serve as a prognostic marker and therapeutic target for women with breast cancer.


Subject(s)
Breast Neoplasms/metabolism , HMGA1a Protein/genetics , HMGA1a Protein/metabolism , Receptors, Estrogen/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/genetics , Disease Progression , Female , Humans , Middle Aged , Prognosis , Republic of Korea , Survival Analysis , Up-Regulation , Young Adult
4.
Sci Rep ; 8(1): 16142, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30367081

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

5.
Sci Rep ; 8(1): 13658, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30209281

ABSTRACT

Quantitative analysis of morphological changes in a cell nucleus is important for the understanding of nuclear architecture and its relationship with pathological conditions such as cancer. However, dimensionality of imaging data, together with a great variability of nuclear shapes, presents challenges for 3D morphological analysis. Thus, there is a compelling need for robust 3D nuclear morphometric techniques to carry out population-wide analysis. We propose a new approach that combines modeling, analysis, and interpretation of morphometric characteristics of cell nuclei and nucleoli in 3D. We used robust surface reconstruction that allows accurate approximation of 3D object boundary. Then, we computed geometric morphological measures characterizing the form of cell nuclei and nucleoli. Using these features, we compared over 450 nuclei with about 1,000 nucleoli of epithelial and mesenchymal prostate cancer cells, as well as 1,000 nuclei with over 2,000 nucleoli from serum-starved and proliferating fibroblast cells. Classification of sets of 9 and 15 cells achieved accuracy of 95.4% and 98%, respectively, for prostate cancer cells, and 95% and 98% for fibroblast cells. To our knowledge, this is the first attempt to combine these methods for 3D nuclear shape modeling and morphometry into a highly parallel pipeline workflow for morphometric analysis of thousands of nuclei and nucleoli in 3D.


Subject(s)
Cell Nucleolus/physiology , Cell Nucleus/physiology , Epithelial Cells/physiology , Fibroblasts/physiology , Imaging, Three-Dimensional/methods , Prostatic Neoplasms/pathology , Cell Nucleolus/pathology , Cell Nucleus/pathology , Humans , Male , Tumor Cells, Cultured
6.
J Cell Biochem ; 119(9): 7127-7142, 2018 09.
Article in English | MEDLINE | ID: mdl-29923622

ABSTRACT

Nuclear alterations are a hallmark of many types of cancers, including prostate cancer (PCa). Recent evidence shows that subvisual changes, ones that may not be visually perceptible to a pathologist, to the nucleus and its ultrastructural components can precede visual histopathological recognition of cancer. Alterations to nuclear features, such as nuclear size and shape, texture, and spatial architecture, reflect the complex molecular-level changes that occur during oncogenesis. Quantitative nuclear morphometry, a field that uses computational approaches to identify and quantify malignancy-induced nuclear changes, can enable a detailed and objective analysis of the PCa cell nucleus. Recent advances in machine learning-based approaches can now automatically mine data related to these changes to aid in the diagnosis, decision making, and prediction of PCa prognoses. In this review, we use PCa as a case study to connect the molecular-level mechanisms that underlie these nuclear changes to the machine learning computational approaches, bridging the gap between the clinical and computational understanding of PCa. First, we will discuss recent developments to our understanding of the molecular events that drive nuclear alterations in the context of PCa: the role of the nuclear matrix and lamina in size and shape changes, the role of 3-dimensional chromatin organization and epigenetic modifications in textural changes, and the role of the tumor microenvironment in altering nuclear spatial topology. We will then discuss the advances in the applications of machine learning algorithms to automatically segment nuclei in prostate histopathological images, extract nuclear features to aid in diagnostic decision making, and predict potential outcomes, such as biochemical recurrence and survival. Finally, we will discuss the challenges and opportunities associated with translation of the quantitative nuclear morphometry methodology into the clinical space. Ultimately, accurate identification and quantification of nuclear alterations can contribute to the field of nucleomics and has applications for computationally driven precision oncologic patient care.


Subject(s)
Chromatin/pathology , Image Interpretation, Computer-Assisted/methods , Machine Learning , Prostatic Neoplasms/pathology , Cell Nucleus Shape , Cell Nucleus Size , Cell Transformation, Neoplastic/ultrastructure , Chromatin/ultrastructure , Epigenesis, Genetic , Genomic Instability , Humans , Male , Prognosis , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/ultrastructure , Tumor Microenvironment
7.
Prostate ; 78(7): 547-559, 2018 05.
Article in English | MEDLINE | ID: mdl-29520928

ABSTRACT

BACKGROUND: There are few tissue-based biomarkers that can accurately predict prostate cancer (PCa) progression and aggressiveness. We sought to evaluate the clinical utility of prostate and breast overexpressed 1 (PBOV1) as a potential PCa biomarker. METHODS: Patient tumor samples were designated by Grade Groups using the 2014 Gleason grading system. Primary radical prostatectomy tumors were obtained from 48 patients and evaluated for PBOV1 levels using Western blot analysis in matched cancer and benign cancer-adjacent regions. Immunohistochemical evaluation of PBOV1 was subsequently performed in 80 cancer and 80 benign cancer-adjacent patient samples across two tissue microarrays (TMAs) to verify protein levels in epithelial tissue and to assess correlation between PBOV1 proteins and nuclear architectural changes in PCa cells. Digital histomorphometric analysis was used to track 22 parameters that characterized nuclear changes in PBOV1-stained cells. Using a training and test set for validation, multivariate logistic regression (MLR) models were used to identify significant nuclear parameters that distinguish Grade Group 3 and above PCa from Grade Group 1 and 2 PCa regions. RESULTS: PBOV1 protein levels were increased in tumors from Grade Group 3 and above (GS 4 + 3 and ≥ 8) regions versus Grade Groups 1 and 2 (GS 3 + 3 and 3 + 4) regions (P = 0.005) as assessed by densitometry of immunoblots. Additionally, by immunoblotting, PBOV1 protein levels differed significantly between Grade Group 2 (GS 3 + 4) and Grade Group 3 (GS 4 + 3) PCa samples (P = 0.028). In the immunohistochemical analysis, measures of PBOV1 staining intensity strongly correlated with nuclear alterations in cancer cells. An MLR model retaining eight parameters describing PBOV1 staining intensity and nuclear architecture discriminated Grade Group 3 and above PCa from Grade Group 1 and 2 PCa and benign cancer-adjacent regions with a ROC-AUC of 0.90 and 0.80, respectively, in training and test sets. CONCLUSIONS: Our study demonstrates that the PBOV1 protein could be used to discriminate Grade Group 3 and above PCa. Additionally, the PBOV1 protein could be involved in modulating changes to the nuclear architecture of PCa cells. Confirmatory studies are warranted in an independent population for further validation.


Subject(s)
Biomarkers, Tumor/metabolism , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Tissue Array Analysis
8.
Eur Urol Focus ; 3(4-5): 457-466, 2017 10.
Article in English | MEDLINE | ID: mdl-28753763

ABSTRACT

BACKGROUND: Gleason scoring represents the standard for diagnosis of prostate cancer (PCa) and assessment of prognosis following radical prostatectomy (RP), but it does not account for patterns in neighboring normal-appearing benign fields that may be predictive of disease recurrence. OBJECTIVE: To investigate (1) whether computer-extracted image features within tumor-adjacent benign regions on digital pathology images could predict recurrence in PCa patients after surgery and (2) whether a tumor plus adjacent benign signature (TABS) could better predict recurrence compared with Gleason score or features from benign or cancerous regions alone. DESIGN, SETTING, AND PARTICIPANTS: We studied 140 tissue microarray cores (0.6mm each) from 70 PCa patients following surgery between 2000 and 2004 with up to 14 yr of follow-up. Overall, 22 patients experienced recurrence (biochemical [prostate-specific antigen], local, or distant recurrence and cancer death) and 48 did not. INTERVENTION: RP was performed in all patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The top 10 features identified as most predictive of recurrence within both the benign and cancerous regions were combined into a 10-feature signature (TABS). Computer-extracted nuclear shape and architectural features from cancerous regions, adjacent benign fields, and TABS were evaluated via random forest classification accuracy and Kaplan-Meier survival analysis. RESULTS AND LIMITATIONS: Tumor-adjacent benign field features were predictive of recurrence (area under the receiver operating characteristic curve [AUC]: 0.72). Tumor-field nuclear shape descriptors and benign-field local nuclear arrangement were the predominant features found for TABS (AUC: 0.77). Combining TABS with Gleason sum further improved identification of recurrence (AUC: 0.81). All experiments were performed using threefold cross-validation without independent test set validation. CONCLUSIONS: Computer-extracted nuclear features within cancerous and benign regions predict recurrence following RP. Furthermore, TABS was shown to provide added value to common predictors including Gleason sum and Kattan and Stephenson nomograms. PATIENT SUMMARY: Future studies may benefit from evaluation of benign regions proximal to the tumor on surgically excised prostate cancer tissue for assessing risk of disease recurrence.


Subject(s)
Cell Nucleus/pathology , Neoplasm Recurrence, Local/pathology , Prostatectomy/methods , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Aged , Biomarkers, Tumor/analysis , Diagnosis, Computer-Assisted/methods , Humans , Male , Middle Aged , Neoplasm Grading/methods , Predictive Value of Tests , Prognosis , Prostate-Specific Antigen/analysis
9.
Proc Natl Acad Sci U S A ; 114(13): E2644-E2653, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28289210

ABSTRACT

Intrinsically disordered proteins (IDPs) that lack a unique 3D structure and comprise a large fraction of the human proteome play important roles in numerous cellular functions. Prostate-Associated Gene 4 (PAGE4) is an IDP that acts as a potentiator of the Activator Protein-1 (AP-1) transcription factor. Homeodomain-Interacting Protein Kinase 1 (HIPK1) phosphorylates PAGE4 at S9 and T51, but only T51 is critical for its activity. Here, we identify a second kinase, CDC-Like Kinase 2 (CLK2), which acts on PAGE4 and hyperphosphorylates it at multiple S/T residues, including S9 and T51. We demonstrate that HIPK1 is expressed in both androgen-dependent and androgen-independent prostate cancer (PCa) cells, whereas CLK2 and PAGE4 are expressed only in androgen-dependent cells. Cell-based studies indicate that PAGE4 interaction with the two kinases leads to opposing functions. HIPK1-phosphorylated PAGE4 (HIPK1-PAGE4) potentiates c-Jun, whereas CLK2-phosphorylated PAGE4 (CLK2-PAGE4) attenuates c-Jun activity. Consistent with the cellular data, biophysical measurements (small-angle X-ray scattering, single-molecule fluorescence resonance energy transfer, and NMR) indicate that HIPK1-PAGE4 exhibits a relatively compact conformational ensemble that binds AP-1, whereas CLK2-PAGE4 is more expanded and resembles a random coil with diminished affinity for AP-1. Taken together, the results suggest that the phosphorylation-induced conformational dynamics of PAGE4 may play a role in modulating changes between PCa cell phenotypes. A mathematical model based on our experimental data demonstrates how differential phosphorylation of PAGE4 can lead to transitions between androgen-dependent and androgen-independent phenotypes by altering the AP-1/androgen receptor regulatory circuit in PCa cells.


Subject(s)
Intrinsically Disordered Proteins/metabolism , Protein Serine-Threonine Kinases/physiology , Protein-Tyrosine Kinases/physiology , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/metabolism , Humans , Intrinsically Disordered Proteins/chemistry , Models, Molecular , Phenotype , Phosphorylation , Protein Conformation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proteome
11.
Cancer Epidemiol Biomarkers Prev ; 24(12): 1864-72, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26404961

ABSTRACT

BACKGROUND: Early prediction of disease progression in men with very low-risk (VLR) prostate cancer who selected active surveillance (AS) rather than immediate treatment could reduce morbidity associated with overtreatment. METHODS: We evaluated the association of six biomarkers [Periostin, (-5, -7) proPSA, CACNA1D, HER2/neu, EZH2, and Ki-67] with different Gleason scores and biochemical recurrence (BCR) on prostate cancer TMAs of 80 radical prostatectomy (RP) cases. Multiplex tissue immunoblotting (MTI) was used to assess these biomarkers in cancer and adjacent benign areas of 5 µm sections. Multivariate logistic regression (MLR) was applied to model our results. RESULTS: In the RP cases, CACNA1D, HER2/neu, and Periostin expression were significantly correlated with aggressive phenotype in cancer areas. An MLR model in the cancer area yielded a ROC-AUC = 0.98, whereas in cancer-adjacent benign areas, yielded a ROC-AUC = 0.94. CACNA1D and HER2/neu expression combined with Gleason score in a MLR model yielded a ROC-AUC = 0.79 for BCR prediction. In the small biopsies from an AS cohort of 61 VLR cases, an MLR model for prediction of progressors at diagnosis retained (-5, -7) proPSA and CACNA1D, yielding a ROC-AUC of 0.78, which was improved to 0.82 after adding tPSA into the model. CONCLUSIONS: The molecular profile of biomarkers is capable of accurately predicting aggressive prostate cancer on retrospective RP cases and identifying potential aggressive prostate cancer requiring immediate treatment on the AS diagnostic biopsy but limited in BCR prediction. IMPACT: Comprehensive profiling of biomarkers using MTI predicts prostate cancer aggressive phenotype in RP and AS biopsies.


Subject(s)
Biomarkers, Tumor/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Disease Progression , Humans , Immunoblotting/methods , Male , Middle Aged , Phenotype , Risk Factors
12.
Cancer Biomark ; 15(6): 763-73, 2015.
Article in English | MEDLINE | ID: mdl-26406418

ABSTRACT

BACKGROUND: A 3.4kb deletion (3.4kbΔ ) in mitochondrial DNA (mtDNA) found in histologically normal prostate biopsy specimens has been reported to be a biomarker for the increased probability of prostate cancer. Increased mtDNA copy number is also reported as associated with cancer. OBJECTIVE: Independent evaluation of these two potential prostate cancer biomarkers using formalin-fixed paraffin-embedded (FFPE) prostate tissue and matched urine and serum from a high risk cohort of men with and without prostate cancer. METHODS: Biomarker levels were detected via qPCR. RESULTS: Both 3.4kbΔ and mtDNA levels were significantly higher in cancer patient FFPE cores (p= 0.045 and p= 0.070 respectively at > 90% confidence). Urine from cancer patients contained significantly higher levels of mtDNA (p= 0.006, 64.3% sensitivity, 86.7% specificity). Combining the 3.4kbΔ and mtDNA gave better performance of detecting prostate cancer than either biomarker alone (FFPE 73.7% sensitivity, 65% specificity; urine 64.3% sensitivity, 100% specificity). In serum, there was no difference for any of the biomarkers. CONCLUSIONS: This is the first report on detecting the 3.4kbΔ in urine and evaluating mtDNA levels as a prostate cancer biomarker. A confirmation study with increased sample size and possibly with additional biomarkers would need to be conducted to corroborate and extend these observations.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Markers , Prostate/metabolism , Prostatic Neoplasms/genetics , Aged , Aged, 80 and over , Case-Control Studies , DNA, Mitochondrial/blood , DNA, Mitochondrial/urine , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Paraffin Embedding , Prognosis , Prospective Studies , Prostate/pathology , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology , Prostatic Neoplasms/urine , ROC Curve , Real-Time Polymerase Chain Reaction , Urinalysis
14.
PLoS One ; 10(4): e0122249, 2015.
Article in English | MEDLINE | ID: mdl-25853582

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is the most common malignancy among men in the United States. Though highly sensitive, the often-used prostate-specific antigen (PSA) test has low specificity which leads to overdiagnosis and overtreatment of PCa. This paper presents results of a retrospective study that indicates that testing for macrophage inhibitory cytokine 1 (MIC-1) concentration along with the PSA assay could provide much improved specificity to the assay. METHODS: The MIC-1 serum level was determined by a novel p-Chip-based immunoassay run on 70 retrospective samples. The assay was configured on p-Chips, small integrated circuits (IC) capable of storing in their electronic memories a serial number to identify the molecular probe immobilized on its surface. The distribution of MIC-1 and pre-determined PSA concentrations were displayed in a 2D plot and the predictive power of the dual MIC-1/PSA assay was analyzed. RESULTS: MIC-1 concentration in serum was elevated in PCa patients (1.44 ng/ml) compared to normal and biopsy-negative individuals (0.93 ng/ml and 0.88 ng/ml, respectively). In addition, the MIC-1 level was correlated with the progression of PCa. The area under the receiver operator curve (AUC-ROC) was 0.81 providing an assay sensitivity of 83.3% and specificity of 60.7% by using a cutoff of 0.494 for the logistic regression value of MIC-1 and PSA. Another approach, by defining high-frequency PCa zones in a two-dimensional plot, resulted in assay sensitivity of 78.6% and specificity of 89.3%. CONCLUSIONS: The analysis based on correlation of MIC-1 and PSA concentrations in serum with the patient PCa status improved the specificity of PCa diagnosis without compromising the high sensitivity of the PSA test alone and has potential for PCa prognosis for patient therapy strategies.


Subject(s)
Biomarkers, Tumor/blood , Growth Differentiation Factor 15/blood , Prostate-Specific Antigen/blood , Prostatic Neoplasms/blood , Aged , Biopsy , Disease Progression , Humans , Male , Middle Aged , Prognosis , Prostatic Neoplasms/pathology , Retrospective Studies
15.
PLoS One ; 10(3): e0121502, 2015.
Article in English | MEDLINE | ID: mdl-25781169

ABSTRACT

BACKGROUND: Periostin is an important extracellular matrix protein involved in cell development and adhesion. Previously, we identified periostin to be up-regulated in aggressive prostate cancer (CaP) using quantitative glycoproteomics and mass spectrometry. The expression of periostin was further evaluated in primary radical prostatectomy (RP) prostate tumors and adjacent non-tumorous prostate tissues using immunohistochemistry (IHC). Our IHC results revealed a low background periostin levels in the adjacent non-tumorous prostate tissues, but overexpressed periostin levels in the peritumoral stroma of primary CaP tumors. METHODS: In this study, periostin expression in CaP was further examined on multiple tissue microarrays (TMAs), which were conducted in four laboratories. To achieve consistent staining, all TMAs were stained with same protocol and scored by same image computation tool to determine the total periostin staining intensities. The TMAs were further scored by pathologists to characterize the stromal staining and epithelial staining. RESULTS: The periostin staining was observed mainly in peritumoral stromal cells and in some cases in tumor epithelial cells though the stronger staining was found in peritumoral stromal cells. Both periostin stromal staining and epithelial staining can differentiate BPH from CaP including low grade CaP (Gleason score ≤6), with significant p-value of 2.2e-16 and 0.001, respectively. Periostin epithelial staining differentiated PIN from low grade CaP (Gleason score ≤6) (p=0.001), while periostin stromal staining differentiated low grade Cap (Gleason score ≤6) from high grade Cap (Gleason score ≤6) (p=1.7e-05). In addition, a positive correlation between total periostin staining and Gleason score was observed (r=0.87, p=0.002). CONCLUSIONS: The results showed that periostin staining was positively correlated with increasing Gleason score and the aggressiveness of prostate disease.


Subject(s)
Cell Adhesion Molecules/biosynthesis , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/biosynthesis , Prostatic Neoplasms/metabolism , Humans , Immunohistochemistry , Male , Prostatic Neoplasms/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Tissue Array Analysis
16.
J Cell Biochem ; 116(7): 1341-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25640606

ABSTRACT

Resistance is a significant limitation to the effectiveness of cancer therapies. The PI3K/Akt and MAP kinase pathways play important roles in a variety of normal cellular processes and tumorigenesis. This study is designed to explore the relationship of these signaling pathways with multidrug resistance in prostate cancer (PCa). The PI3K/Akt and MAP kinase pathways were investigated utilizing paclitaxel resistant DU145-TxR PCa cells and their parental non-resistant DU145 cells to determine their relationship with resistance to paclitaxel and other anticancer drugs. Our results demonstrate that the PI3K/Akt and MAP kinase pathways are upregulated in DU145-TxR cells compared to the DU145 cells. Inactivating these pathways using the PI3K/Akt pathway inhibitor LY294002 or the MAP kinase pathway inhibitor PD98059 renders the DU145-TxR cells more sensitive to paclitaxel. We investigated the effects of these inhibitors on other anticancer drugs including docetaxel, vinblastine, doxorubicin, 10-Hydroxycamptothecin (10-HCPT) and cisplatin and find that both inhibitors induces DU145-TxR cells to be more sensitive only to the microtubule-targeting drugs (paclitaxel, docetaxel and vinblastine). Furthermore, the treatment with these inhibitors induces cleaved-PARP production in DU145-TxR cells, suggesting that apoptosis induction might be one of the mechanisms for the reversal of drug resistance. In conclusion, the PI3K/Akt and MAP kinase pathways are associated with resistance to multiple chemotherapeutic drugs. Inactivating these pathways renders these PCa cells more sensitive to microtubule-targeting drugs such as paclitaxel, docetaxel and vinblastine. Combination therapies with novel inhibitors of these two signaling pathways potentially represents a more effective treatment for drug resistant PCa.


Subject(s)
Drug Resistance, Multiple , Drug Resistance, Neoplasm , Prostatic Neoplasms/genetics , Signal Transduction , Tubulin Modulators/pharmacology , Up-Regulation , Cell Line, Tumor , Cell Survival/drug effects , Chromones/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Flavonoids/pharmacology , Humans , Male , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
17.
Comput Med Imaging Graph ; 41: 3-13, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25466771

ABSTRACT

Shape based active contours have emerged as a natural solution to overlap resolution. However, most of these shape-based methods are computationally expensive. There are instances in an image where no overlapping objects are present and applying these schemes results in significant computational overhead without any accompanying, additional benefit. In this paper we present a novel adaptive active contour scheme (AdACM) that combines boundary and region based energy terms with a shape prior in a multi level set formulation. To reduce the computational overhead, the shape prior term in the variational formulation is only invoked for those instances in the image where overlaps between objects are identified; these overlaps being identified via a contour concavity detection scheme. By not having to invoke all three terms (shape, boundary, region) for segmenting every object in the scene, the computational expense of the integrated active contour model is dramatically reduced, a particularly relevant consideration when multiple objects have to be segmented on very large histopathological images. The AdACM was employed for the task of segmenting nuclei on 80 prostate cancer tissue microarray images from 40 patient studies. Nuclear shape based, architectural and textural features extracted from these segmentations were extracted and found to able to discriminate different Gleason grade patterns with a classification accuracy of 86% via a quadratic discriminant analysis (QDA) classifier. On average the AdACM model provided 60% savings in computational times compared to a non-optimized hybrid active contour model involving a shape prior.


Subject(s)
Cell Nucleus Shape , Machine Learning , Microscopy/methods , Oligonucleotide Array Sequence Analysis/methods , Pattern Recognition, Automated/methods , Prostatic Neoplasms/pathology , Algorithms , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Male , Neoplasm Grading , Reproducibility of Results , Sensitivity and Specificity , Subtraction Technique
18.
Prostate ; 75(2): 218-24, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25327565

ABSTRACT

BACKGROUND: Prostate cancer progression is concomitant with quantifiable nuclear structure and texture changes as compared to non-cancer tissue. Malignant progression is associated with an epithelial-mesenchymal transition (EMT) program whereby epithelial cancer cells take on a mesenchymal phenotype and dissociate from a tumor mass, invade, and disseminate to distant metastatic sites. The objective of this study was to determine if epithelial and mesenchymal prostate cancer cells have different nuclear morphology. METHODS: Murine tibia injections of epithelial PC3 (PC3-Epi) and mesenchymal PC3 (PC3-EMT) prostate cancer cells were processed and stained with H&E. Cancer cell nuclear image data was obtained using commercially available image-processing software. Univariate and multivariate statistical analysis were used to compare the two phenotypes. Several non-parametric classifiers were constructed and permutation-tested at various training set fractions to ensure robustness of classification between PC3-Epi and PC3-EMT cells in vivo. RESULTS: PC3-Epi and PC3-EMT prostate cancer cells were separable at the single cell level in murine tibia injections on the basis of nuclear structure and texture remodeling associated with an EMT. Support vector machine and multinomial logistic regression models based on nuclear architecture features yielded AUC-ROC curves of 0.95 and 0.96, respectively, in separating PC3-Epi and PC3-EMT prostate cancer cells in vivo. CONCLUSIONS: Prostate cancer cells that have undergone an EMT demonstrated an altered nuclear structure. The association of nuclear changes and a mesenchymal phenotype demonstrates quantitative morphometric image analysis may be used to detect cancer cells that have undergone EMT. This morphometric measurement could provide valuable prognostic information in patients regarding the likelihood of [future] metastatic disease.


Subject(s)
Cell Nucleus Shape/physiology , Epithelial-Mesenchymal Transition/physiology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Animals , Male , Mice , Mice, Inbred NOD , Mice, SCID
19.
Interface Focus ; 4(4): 20140014, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25097747

ABSTRACT

Tumour proliferation is promoted by an intratumoral metabolic symbiosis in which lactate from stromal cells fuels energy generation in the oxygenated domain of the tumour. Furthermore, empirical data show that tumour cells adopt an intermediate metabolic state between lactate respiration and glycolysis. This study models the metabolic symbiosis in the tumour through the formalism of evolutionary game theory. Our game model of metabolic symbiosis in cancer considers two types of tumour cells, hypoxic and oxygenated, while glucose and lactate are considered as the two main sources of energy within the tumour. The model confirms the presence of multiple intermediate stable states and hybrid energy strategies in the tumour. It predicts that nonlinear interaction between two subpopulations leads to tumour metabolic critical transitions and that tumours can obtain different intermediate states between glycolysis and respiration which can be regulated by the genomic mutation rate. The model can apply in the epithelial-stromal metabolic decoupling therapy.

20.
Adv Exp Med Biol ; 773: 77-99, 2014.
Article in English | MEDLINE | ID: mdl-24563344

ABSTRACT

Nuclear structure alterations in cancer involve global genetic (mutations, amplifications, copy number variations, translocations, etc.) and epigenetic (DNA methylation and histone modifications) events that dramatically and dynamically spatially change chromatin, nuclear body, and chromosome organization. In prostate cancer (CaP) there appears to be early (<50 years) versus late (>60 years) onset clinically significant cancers, and we have yet to clearly understand the hereditary and somatic-based molecular pathways involved. We do know that once cancer is initiated, dedifferentiation of the prostate gland occurs with significant changes in nuclear structure driven by numerous genetic and epigenetic processes. This review focuses upon the nuclear architecture and epigenetic dynamics with potential translational clinically relevant applications to CaP. Further, the review correlates changes in the cancer-driven epigenetic process at the molecular level and correlates these alterations to nuclear morphological quantitative measurements. Finally, we address how we can best utilize this knowledge to improve the efficacy of personalized treatment of cancer.


Subject(s)
Cell Nucleus/ultrastructure , Epigenesis, Genetic , Prostatic Neoplasms/pathology , Cell Nucleus Shape , Humans , Male , Prostatic Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...