Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 18934, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26740240

ABSTRACT

The IκB kinase (IKK) complex acts as the gatekeeper of canonical NF-κB signaling, thereby regulating immunity, inflammation and cancer. It consists of the catalytic subunits IKKα and IKKß and the regulatory subunit NEMO/IKKγ. Here, we show that the ubiquitin binding domain (UBAN) in NEMO is essential for IKK/NF-κB activation in response to TNFα, but not IL-1ß stimulation. By screening a natural compound library we identified an anthraquinone derivative that acts as an inhibitor of NEMO-ubiquitin binding (iNUB). Using biochemical and NMR experiments we demonstrate that iNUB binds to NEMOUBAN and competes for interaction with methionine-1-linked linear ubiquitin chains. iNUB inhibited NF-κB activation upon UBAN-dependent TNFα and TCR/CD28, but not UBAN-independent IL-1ß stimulation. Moreover, iNUB was selectively killing lymphoma cells that are addicted to chronic B-cell receptor triggered IKK/NF-κB activation. Thus, iNUB disrupts the NEMO-ubiquitin protein-protein interaction interface and thereby inhibits physiological and pathological NF-κB signaling.


Subject(s)
Anthraquinones/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Ubiquitin/metabolism , Animals , Drug Evaluation, Preclinical , HeLa Cells , Humans , Interleukin-1beta/physiology , Mice , Protein Binding , Protein Interaction Domains and Motifs , Tumor Necrosis Factor-alpha/physiology , Ubiquitination
2.
PLoS One ; 8(12): e82065, 2013.
Article in English | MEDLINE | ID: mdl-24339992

ABSTRACT

Vertebrate type V myosins (MyoV) Myo5a, Myo5b, and Myo5c mediate transport of several different cargoes. All MyoV paralogs bind to cargo complexes mainly by their C-terminal globular domains. In absence of cargo, the globular domain of Myo5a inhibits its motor domain. Here, we report low-resolution SAXS models for the globular domains from human Myo5a, Myo5b, and Myo5c, which suggest very similar overall shapes of all three paralogs. We determined the crystal structures of globular domains from Myo5a and Myo5b, and provide a homology model for human Myo5c. When we docked the Myo5a crystal structure into a previously published electron microscopy density of the autoinhibited full-length Myo5a, only one domain orientation resulted in a good fit. This structural arrangement suggests the participation of additional region of the globular domain in autoinhibition. Quantification of the interaction of the Myo5a globular domain with its motor complex revealed a tight binding with dissociation half-life in the order of minutes, suggesting a rather slow transition between the active and inactive states.


Subject(s)
Models, Molecular , Myosin Heavy Chains/chemistry , Myosin Type V/chemistry , Humans , Protein Structure, Tertiary , Structural Homology, Protein
3.
Article in English | MEDLINE | ID: mdl-24192353

ABSTRACT

Type V myosins constitute the main cargo-transporting class of myosin motors in higher eukaryotes. They are mainly defined by their C-terminal globular domain, which is required for cargo binding as well as for motor auto-inhibition in the absence of cargo. To date, high-resolution structures only exist for globular domains from yeast. Since the majority of cellular cargoes in yeast are very different from the cargoes in higher eukaryotes, structural insights into the domain organization of globular domains from human type V myosins are important. The globular domain of human Myo5a was cloned, expressed and crystallized and data sets were collected. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 75.04, b = 86.70, c = 131.41 Å, α = ß = γ = 90°, and diffracted with data-collection quality to 2.5 Šresolution.


Subject(s)
Myosin Heavy Chains/chemistry , Myosin Heavy Chains/isolation & purification , Myosin Type V/chemistry , Myosin Type V/isolation & purification , Crystallization , Crystallography, X-Ray , Humans , Protein Structure, Tertiary
4.
Gen Physiol Biophys ; 28(4): 384-90, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20097961

ABSTRACT

One of the key functions of nitric oxide (NO) in human is to dilate blood vessels. We tested glycerol trinitrate (GTN) and other well-known NO donors together with those bearing a >C=N-OH group for possible conversion to NO (or nitrites, respectively) by diaphorase (DP) and lipoamide dehydrogenase (LAD). Both, DP and LAD were unable to convert formamidoxime (FAM), acetone oxime (AC), acetohydroxamic acid (AHA) and Nomega-hydroxy-L-arginine (L-NOHA). On the other hand, we observed good conversion of GTN without the requirement of superoxide anion. However, superoxide anion participated to a varying extent in the conversion of other donors (formaldoxime (FAL), acetaldoxime (AO), nitroprusside (NP), S-nitrosoglutathione (SNOG), S-nitroso-N-acetylpenicillamine (SNAP) and hydroxylamine (HA)). All DP- and LAD-mediated reactions were inhibited by diphenyleneiodonium chloride (DPI), (an inhibitor of flavine enzymes), in a concentration-dependent manner. For these inhibition reactions we determined Ki and IC50 values. In addition, we found that conversion of SNOG was significantly accelerated by glutathione reductase (GTR). Like with DP, 2-phenyl- 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) was reduced also by LAD and thioredoxin reductase (TRR). In summary, we found that LAD significantly accelerates the conversion of a defined subset of NO donors to NO, especially GTN, and eliminates the NO scavenging effect of PTIO.


Subject(s)
Biocatalysis , Cyclic N-Oxides/metabolism , Dihydrolipoamide Dehydrogenase/metabolism , Free Radical Scavengers/metabolism , Imidazoles/metabolism , Nitric Oxide/metabolism , Clostridium kluyveri/enzymology , Dihydrolipoamide Dehydrogenase/antagonists & inhibitors , Electron Spin Resonance Spectroscopy , Kinetics , Onium Compounds/pharmacology , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...