Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(10): eadd6778, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36897951

ABSTRACT

Laparoscopic surgery has evolved as a key technique for cancer diagnosis and therapy. While characterization of the tissue perfusion is crucial in various procedures, such as partial nephrectomy, doing so by means of visual inspection remains highly challenging. We developed a laparoscopic real-time multispectral imaging system featuring a compact and lightweight multispectral camera and the possibility to complement the conventional surgical view of the patient with functional information at a video rate of 25 Hz. To enable contrast agent-free ischemia monitoring during laparoscopic partial nephrectomy, we phrase the problem of ischemia detection as an out-of-distribution detection problem that does not rely on data from any other patient and uses an ensemble of invertible neural networks at its core. An in-human trial demonstrates the feasibility of our approach and highlights the potential of spectral imaging combined with advanced deep learning-based analysis tools for fast, efficient, reliable, and safe functional laparoscopic imaging.


Subject(s)
Contrast Media , Laparoscopy , Humans , Nephrectomy/methods , Neural Networks, Computer , Laparoscopy/methods , Ischemia
2.
Biomed Opt Express ; 13(3): 1224-1242, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35414995

ABSTRACT

Multispectral imaging provides valuable information on tissue composition such as hemoglobin oxygen saturation. However, the real-time application of this technique in interventional medicine can be challenging due to the long acquisition times needed for large amounts of hyperspectral data with hundreds of bands. While this challenge can partially be addressed by choosing a discriminative subset of bands, the band selection methods proposed to date are mainly restricted by the availability of often hard to obtain reference measurements. We address this bottleneck with a new approach to band selection that leverages highly accurate Monte Carlo (MC) simulations. We hypothesize that a so chosen small subset of bands can reproduce or even improve upon the results of a quasi continuous spectral measurement. We further investigate whether novel domain adaptation techniques can address the inevitable domain shift stemming from the use of simulations. Initial results based on in silico and in vivo experiments suggest that 10-20 bands are sufficient to closely reproduce results from spectral measurements with 101 bands in the 500-700 nm range. The investigated domain adaptation technique, which only requires unlabeled in vivo measurements, yielded better results than the pure in silico band selection method. Overall, our method could guide development of fast multispectral imaging systems suited for interventional use without relying on complex hardware setups or manually labeled data.

3.
Int J Comput Assist Radiol Surg ; 15(7): 1117-1125, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32535848

ABSTRACT

PURPOSE: Live intra-operative functional imaging has multiple potential clinical applications, such as localization of ischemia, assessment of organ transplantation success and perfusion monitoring. Recent research has shown that live monitoring of functional tissue properties, such as tissue oxygenation and blood volume fraction, is possible using multispectral imaging in laparoscopic surgery. While the illuminant spectrum is typically kept constant in laparoscopic surgery and can thus be estimated from preoperative calibration images, a key challenge in open surgery originates from the dynamic changes of lighting conditions. METHODS: The present paper addresses this challenge with a novel approach to light source calibration based on specular highlight analysis. It involves the acquisition of low-exposure time images serving as a basis for recovering the illuminant spectrum from pixels that contain a dominant specular reflectance component. RESULTS: Comprehensive in silico and in vivo experiments with a range of different light sources demonstrate that our approach enables an accurate and robust recovery of the illuminant spectrum in the field of view of the camera, which results in reduced errors with respect to the estimation of functional tissue properties. Our approach further outperforms state-of-the-art methods proposed in the field of computer vision. CONCLUSION: Our results suggest that low-exposure multispectral images are well suited for light source calibration via specular highlight analysis. This work thus provides an important first step toward live functional imaging in open surgery.


Subject(s)
Laparoscopy/methods , Lighting , Monitoring, Intraoperative/methods , Calibration , Computer Simulation , Humans
4.
Int J Comput Assist Radiol Surg ; 14(6): 997-1007, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30903566

ABSTRACT

PURPOSE: Optical imaging is evolving as a key technique for advanced sensing in the operating room. Recent research has shown that machine learning algorithms can be used to address the inverse problem of converting pixel-wise multispectral reflectance measurements to underlying tissue parameters, such as oxygenation. Assessment of the specific hardware used in conjunction with such algorithms, however, has not properly addressed the possibility that the problem may be ill-posed. METHODS: We present a novel approach to the assessment of optical imaging modalities, which is sensitive to the different types of uncertainties that may occur when inferring tissue parameters. Based on the concept of invertible neural networks, our framework goes beyond point estimates and maps each multispectral measurement to a full posterior probability distribution which is capable of representing ambiguity in the solution via multiple modes. Performance metrics for a hardware setup can then be computed from the characteristics of the posteriors. RESULTS: Application of the assessment framework to the specific use case of camera selection for physiological parameter estimation yields the following insights: (1) estimation of tissue oxygenation from multispectral images is a well-posed problem, while (2) blood volume fraction may not be recovered without ambiguity. (3) In general, ambiguity may be reduced by increasing the number of spectral bands in the camera. CONCLUSION: Our method could help to optimize optical camera design in an application-specific manner.


Subject(s)
Machine Learning , Neural Networks, Computer , Optical Imaging/methods , Algorithms , Humans , Uncertainty
5.
IEEE Trans Biomed Eng ; 65(11): 2649-2659, 2018 11.
Article in English | MEDLINE | ID: mdl-29993443

ABSTRACT

OBJECTIVE: Surgical data science is evolving into a research field that aims to observe everything occurring within and around the treatment process to provide situation-aware data-driven assistance. In the context of endoscopic video analysis, the accurate classification of organs in the field of view of the camera proffers a technical challenge. Herein, we propose a new approach to anatomical structure classification and image tagging that features an intrinsic measure of confidence to estimate its own performance with high reliability and which can be applied to both RGB and multispectral imaging (MI) data. METHODS: Organ recognition is performed using a superpixel classification strategy based on textural and reflectance information. Classification confidence is estimated by analyzing the dispersion of class probabilities. Assessment of the proposed technology is performed through a comprehensive in vivo study with seven pigs. RESULTS: When applied to image tagging, mean accuracy in our experiments increased from 65% (RGB) and 80% (MI) to 90% (RGB) and 96% (MI) with the confidence measure. CONCLUSION: Results showed that the confidence measure had a significant influence on the classification accuracy, and MI data are better suited for anatomical structure labeling than RGB data. SIGNIFICANCE: This paper significantly enhances the state of art in automatic labeling of endoscopic videos by introducing the use of the confidence metric, and by being the first study to use MI data for in vivo laparoscopic tissue classification. The data of our experiments will be released as the first in vivo MI dataset upon publication of this paper.


Subject(s)
Digestive System Surgical Procedures/methods , Digestive System/diagnostic imaging , Image Processing, Computer-Assisted/methods , Laparoscopy/methods , Animals , Spleen/diagnostic imaging , Swine , Video Recording
6.
Int J Comput Assist Radiol Surg ; 13(6): 925-933, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29704196

ABSTRACT

PURPOSE: Surgical data science is a new research field that aims to observe all aspects of the patient treatment process in order to provide the right assistance at the right time. Due to the breakthrough successes of deep learning-based solutions for automatic image annotation, the availability of reference annotations for algorithm training is becoming a major bottleneck in the field. The purpose of this paper was to investigate the concept of self-supervised learning to address this issue. METHODS: Our approach is guided by the hypothesis that unlabeled video data can be used to learn a representation of the target domain that boosts the performance of state-of-the-art machine learning algorithms when used for pre-training. Core of the method is an auxiliary task based on raw endoscopic video data of the target domain that is used to initialize the convolutional neural network (CNN) for the target task. In this paper, we propose the re-colorization of medical images with a conditional generative adversarial network (cGAN)-based architecture as auxiliary task. A variant of the method involves a second pre-training step based on labeled data for the target task from a related domain. We validate both variants using medical instrument segmentation as target task. RESULTS: The proposed approach can be used to radically reduce the manual annotation effort involved in training CNNs. Compared to the baseline approach of generating annotated data from scratch, our method decreases exploratively the number of labeled images by up to 75% without sacrificing performance. Our method also outperforms alternative methods for CNN pre-training, such as pre-training on publicly available non-medical (COCO) or medical data (MICCAI EndoVis2017 challenge) using the target task (in this instance: segmentation). CONCLUSION: As it makes efficient use of available (non-)public and (un-)labeled data, the approach has the potential to become a valuable tool for CNN (pre-)training.


Subject(s)
Algorithms , Endoscopy/education , Neural Networks, Computer , Supervised Machine Learning , Video Recording , Humans
7.
IEEE Trans Biomed Eng ; 63(9): 1862-1873, 2016 09.
Article in English | MEDLINE | ID: mdl-26625405

ABSTRACT

Barrett's oesophagus, a premalignant condition of the oesophagus has been on a rise in the recent years. The standard diagnostic protocol for Barrett's involves obtaining biopsies at suspicious regions along the oesophagus. The localization and tracking of these biopsy sites "interoperatively" poses a significant challenge for providing targeted treatments and tracking disease progression. This paper proposes an approach to provide guided navigation and relocalization of the biopsy sites using an electromagnetic tracking system. The characteristic of our approach over existing ones is the integration of an electromagnetic sensor at the flexible endoscope tip, so that the endoscopic camera depth inside the oesophagus can be computed in real time, allowing to retrieve and display an image from a previous exploration at the same depth. We first describe our system setup and methodology for interoperative registration. We then propose three incremental experiments of our approach. First, on synthetic data with realistic noise model to analyze the error bounds of our system. The second on in vivo pig data using an optical tracking system to provide a pseudo ground truth. Accuracy results obtained were consistent with the synthetic experiments despite uncertainty introduced due to breathing motion, and remain inside acceptable error margin according to medical experts. Finally, a third experiment designed using data from pigs to simulate a real task of biopsy site relocalization, and evaluated by ten gastro-intestinal experts. It clearly demonstrated the benefit of our system toward assisted guidance by improving the biopsy site retrieval rate from 47.5% to 94%.


Subject(s)
Esophagoscopes , Esophagus/pathology , Esophagus/surgery , Image-Guided Biopsy/instrumentation , Magnetics/instrumentation , Natural Orifice Endoscopic Surgery/instrumentation , Animals , Equipment Design , Equipment Failure Analysis , Esophagus/diagnostic imaging , Image-Guided Biopsy/methods , Microscopy, Video/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Swine
8.
Article in English | MEDLINE | ID: mdl-24505688

ABSTRACT

The screening of oesophageal adenocarcinoma involves obtaining biopsies at different regions along the oesophagus. The localization and tracking of these biopsy sites inter-operatively poses a significant challenge for providing targeted treatments. This paper presents a novel framework for providing a guided navigation to the gastro-intestinal specialist for accurate re-positioning of the endoscope at previously targeted sites. Firstly, we explain our approach for the application of electromagnetic tracking in acheiving this objective. Then, we show on three in-vivo porcine interventions that our system can provide accurate guidance information, which was qualitatively evaluated by five experts.


Subject(s)
Adenocarcinoma/pathology , Capsule Endoscopy/methods , Esophageal Neoplasms/pathology , Image-Guided Biopsy/methods , Magnetics/methods , Subtraction Technique , Humans , Observer Variation , Signal Processing, Computer-Assisted
9.
Surg Endosc ; 26(12): 3655-62, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22736284

ABSTRACT

BACKGROUND: Surgical procedures have undergone considerable advancement during the last few decades. More recently, the availability of some imaging methods intraoperatively has added a new dimension to minimally invasive techniques. Augmented reality in surgery has been a topic of intense interest and research. METHODS: Augmented reality involves usage of computer vision algorithms on video from endoscopic cameras or cameras mounted in the operating room to provide the surgeon additional information that he or she otherwise would have to recognize intuitively. One of the techniques combines a virtual preoperative model of the patient with the endoscope camera using natural or artificial landmarks to provide an augmented reality view in the operating room. The authors' approach is to provide this with the least number of changes to the operating room. Software architecture is presented to provide interactive adjustment in the registration of a three-dimensional (3D) model and endoscope video. RESULTS: Augmented reality including adrenalectomy, ureteropelvic junction obstruction, and retrocaval ureter and pancreas was used to perform 12 surgeries. The general feedback from the surgeons has been very positive not only in terms of deciding the positions for inserting points but also in knowing the least change in anatomy. CONCLUSIONS: The approach involves providing a deformable 3D model architecture and its application to the operating room. A 3D model with a deformable structure is needed to show the shape change of soft tissue during the surgery. The software architecture to provide interactive adjustment in registration of the 3D model and endoscope video with adjustability of every 3D model is presented.


Subject(s)
Computer Simulation , Imaging, Three-Dimensional , Minimally Invasive Surgical Procedures/methods , Surgery, Computer-Assisted , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...