Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(6): 114242, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38768033

ABSTRACT

Terminal differentiation requires massive restructuring of the transcriptome. During intestinal differentiation, the expression patterns of nearly 4,000 genes are altered as cells transition from progenitor cells in crypts to differentiated cells in villi. We identify dynamic occupancy of RNA polymerase II (Pol II) to gene promoters as the primary driver of transcriptomic shifts during intestinal differentiation in vivo. Changes in enhancer-promoter looping interactions accompany dynamic Pol II occupancy and are dependent upon HNF4, a pro-differentiation transcription factor. Using genetic loss-of-function, chromatin immunoprecipitation sequencing (ChIP-seq), and immunoprecipitation (IP) mass spectrometry, we demonstrate that HNF4 collaborates with chromatin remodelers and loop-stabilizing proteins and facilitates Pol II occupancy at hundreds of genes pivotal to differentiation. We also explore alternate mechanisms that drive differentiation gene expression and find that pause-release of Pol II and post-transcriptional mRNA stability regulate smaller subsets of differentially expressed genes. These studies provide insights into the mechanisms of differentiation in renewing adult tissue.

2.
Brain Behav Immun ; 119: 665-680, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579936

ABSTRACT

Depression is a prevalent psychological condition with limited treatment options. While its etiology is multifactorial, both chronic stress and changes in microbiome composition are associated with disease pathology. Stress is known to induce microbiome dysbiosis, defined here as a change in microbial composition associated with a pathological condition. This state of dysbiosis is known to feedback on depressive symptoms. While studies have demonstrated that targeted restoration of the microbiome can alleviate depressive-like symptoms in mice, translating these findings to human patients has proven challenging due to the complexity of the human microbiome. As such, there is an urgent need to identify factors upstream of microbial dysbiosis. Here we investigate the role of mucin 13 as an upstream mediator of microbiome composition changes in the context of stress. Using a model of chronic stress, we show that the glycocalyx protein, mucin 13, is selectively reduced after psychological stress exposure. We further demonstrate that the reduction of Muc13 is mediated by the Hnf4 transcription factor family. Finally, we determine that deleting Muc13 is sufficient to drive microbiome shifts and despair behaviors. These findings shed light on the mechanisms behind stress-induced microbial changes and reveal a novel regulator of mucin 13 expression.

3.
bioRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37986803

ABSTRACT

Terminal differentiation requires a massive restructuring of the transcriptome. During intestinal differentiation, the expression patterns of nearly 4000 genes are altered as cells transition from progenitor cells in crypts to differentiated cells in villi. We identified dynamic recruitment of RNA Polymerase II (Pol II) to gene promoters as the primary driver of transcriptomic shifts during intestinal differentiation in vivo. Changes in enhancer-promoter looping interactions accompany dynamic Pol II recruitment and are dependent upon HNF4, a pro-differentiation transcription factor. Using genetic loss-of- function, ChIP-seq and IP mass spectrometry, we demonstrate that HNF4 collaborates with chromatin remodelers and loop-stabilizing proteins and facilitates Pol II recruitment at hundreds of genes pivotal to differentiation. We also explore alternate mechanisms which drive differentiation gene expression and find pause-release of Pol II and post- transcriptional mRNA stability regulate smaller subsets of differentially expressed genes. These studies provide insights into the mechanisms of differentiation in a renewing adult tissue.

4.
Cell Stem Cell ; 30(11): 1520-1537.e8, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37865088

ABSTRACT

The gut epithelium has a remarkable ability to recover from damage. We employed a combination of high-throughput sequencing approaches, mouse genetics, and murine and human organoids and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. The depletion of macrophages or genetic disruption of TGFB signaling significantly impaired the regenerative response. Intestinal regeneration is characterized by the induction of a fetal-like transcriptional signature during repair. In organoid culture, TGFB1 treatment was necessary and sufficient to induce the fetal-like/regenerative state. Mesenchymal cells were also responsive to TGFB1 and enhanced the regenerative response. Mechanistically, pro-regenerative factors, YAP/TEAD and SOX9, are activated in the epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for cellular therapy.


Subject(s)
Intestinal Mucosa , Intestines , Animals , Humans , Mice , Colon , Intestinal Mucosa/metabolism , Organoids/metabolism , Signal Transduction , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism
5.
Front Endocrinol (Lausanne) ; 14: 1232569, 2023.
Article in English | MEDLINE | ID: mdl-37635981

ABSTRACT

Hepatocyte nuclear factor 4-alpha (HNF4α) drives a complex array of transcriptional programs across multiple organs. Beyond its previously documented function in the liver, HNF4α has crucial roles in the kidney, intestine, and pancreas. In the intestine, a multitude of functions have been attributed to HNF4 and its accessory transcription factors, including but not limited to, intestinal maturation, differentiation, regeneration, and stem cell renewal. Functional redundancy between HNF4α and its intestine-restricted paralog HNF4γ, and co-regulation with other transcription factors drive these functions. Dysregulated expression of HNF4 results in a wide range of disease manifestations, including the development of a chronic inflammatory state in the intestine. In this review, we focus on the multiple molecular mechanisms of HNF4 in the intestine and explore translational opportunities. We aim to introduce new perspectives in understanding intestinal genetics and the complexity of gastrointestinal disorders through the lens of HNF4 transcription factors.


Subject(s)
Gene Expression Regulation , Transcription Factors , Humans , Cell Differentiation , Inflammation , Intestines
6.
Front Endocrinol (Lausanne) ; 14: 1226173, 2023.
Article in English | MEDLINE | ID: mdl-37600688

ABSTRACT

In the more than 30 years since the purification and cloning of Hepatocyte Nuclear Factor 4 (HNF4α), considerable insight into its role in liver function has been gleaned from its target genes and mouse experiments. HNF4α plays a key role in lipid and glucose metabolism and intersects with not just diabetes and circadian rhythms but also with liver cancer, although much remains to be elucidated about those interactions. Similarly, while we are beginning to elucidate the role of the isoforms expressed from its two promoters, we know little about the alternatively spliced variants in other portions of the protein and their impact on the 1000-plus HNF4α target genes. This review will address how HNF4α came to be called the master regulator of liver-specific gene expression with a focus on its role in basic metabolism, the contributions of the various isoforms and the intriguing intersection with the circadian clock.


Subject(s)
Circadian Clocks , Hepatocyte Nuclear Factor 4 , Liver , Animals , Humans , Mice , Basal Metabolism , Liver/physiology , Protein Isoforms/genetics , Hepatocyte Nuclear Factor 4/genetics
7.
Cancers (Basel) ; 14(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35565432

ABSTRACT

Three murine glioma cell lines (GL261, CT2A, and ALTS1C1) were modified to downregulate the expression of the murine LDH-A gene using shRNA, and compared to shRNA scrambled control (NC) cell lines. Differences in the expression of LDH-A and LDH-B mRNA, protein and enzymatic activity, as well as their LDH isoenzyme profiles, were observed in the six cell lines, and confirmed successful LDH-A KD. LDH-A KD (knock-down) resulted in metabolic changes in cells with a reduction in glycolysis (GlycoPER) and an increase in basal respiratory rate (mitoOCR). GL261 cells had a more limited ATP production capacity compared to CT2A and ALTS1C1 cells. An analysis of mRNA expression data indicated that: (i) GL261 LDH-A KD cells may have an improved ability to metabolize lactate into the TCA cycle; and (ii) that GL261 LDH-A KD cells can upregulate lipid metabolism/fatty acid oxidation pathways, whereas the other glioma cell lines do not have this capacity. These two observations suggest that GL261 LDH-A KD cells can develop/activate alternative metabolic pathways for enhanced survival in a nutrient-limited environment, and that specific nutrient limitations have a variable impact on tumor cell metabolism and proliferation. The phenotypic effects of LDH-A KD were compared to those in control (NC) cells and tumors. LDH-A KD prolonged the doubling time of GL261 cells in culture and prevented the formation of subcutaneous flank tumors in immune-competent C57BL/6 mice, whereas GL261 NC tumors had a prolonged growth delay in C57BL/6 mice. In nude mice, both LDH-A KD and NC GL261 tumors grew rapidly (more rapidly than GL261 NC tumors in C57BL/6 mice), demonstrating the impact of an intact immune system on GL261 tumor growth. No differences between NC and KD cell proliferation (in vitro) or tumor growth in C57BL/6 mice (doubling time) were observed for CT2A and ALTS1C1 cells and tumors, despite the small changes to their LDH isoenzyme profiles. These results suggest that GL261 glioma cells (but not CT2A and ALTS1C1 cells) are pre-programmed to have the capacity for activating different metabolic pathways with higher TCA cycle activity, and that this capacity is enhanced by LDH-A depletion. We observed that the combined impact of LDH-A depletion and the immune system had a significant impact on the growth of subcutaneous-located GL261 tumors.

8.
Cancers (Basel) ; 14(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35565435

ABSTRACT

The effects of the LDH-A depletion via shRNA knockdown on three murine glioma cell lines and corresponding intracranial (i.c.) tumors were studied and compared to pharmacologic (GNE-R-140) inhibition of the LDH enzyme complex, and to shRNA scrambled control (NC) cell lines. The effects of genetic-shRNA LDH-A knockdown and LDH drug-targeted inhibition (GNE-R-140) on tumor-cell metabolism, tumor growth, and animal survival were similar. LDH-A KD and GNE-R-140 unexpectedly increased the aggressiveness of GL261 intracranial gliomas, but not CT2A and ALTS1C1 i.c. gliomas. Furthermore, the bioenergetic profiles (ECAR and OCR) of GL261 NC and LDH-A KD cells under different nutrient limitations showed that (a) exogenous pyruvate is not a major carbon source for metabolism through the TCA cycle of native GL261 cells; and (b) the unique upregulation of LDH-B that occurs in GL261 LDH-A KD cells results in these cells being better able to: (i) metabolize lactate as a primary carbon source through the TCA cycle, (ii) be a net consumer of lactate, and (iii) showed a significant increase in the proliferation rate following the addition of 10 mM lactate to the glucose-free media (only seen in GL261 KD cells). Our study suggests that inhibition of LDH-A/glycolysis may not be a general strategy to inhibit the i.c. growth of all gliomas, since the level of LDH-A expression and its interplay with LDH-B can lead to complex metabolic interactions between tumor cells and their environment. Metabolic-inhibition treatment strategies need to be carefully assessed, since the inhibition of glycolysis (e.g., inhibition of LDH-A) may lead to the unexpected development and activation of alternative metabolic pathways (e.g., upregulation of lipid metabolism and fatty-acid oxidation pathways), resulting in enhanced tumor-cell survival in a nutrient-limited environment and leading to increased tumor aggressiveness.

9.
Mol Ther Oncolytics ; 18: 382-395, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32913888

ABSTRACT

To enhance human prostate-specific membrane antigen (hPSMA)-specific chimeric antigen receptor (CAR) T cell therapy in a hPSMA+ MyC-CaP tumor model, we studied and imaged the effect of lactate dehydrogenase A (LDH-A) depletion on the tumor microenvironment (TME) and tumor progression. Effective LDH-A short hairpin RNA (shRNA) knockdown (KD) was achieved in MyC-CaP:hPSMA+ Renilla luciferase (RLuc)-internal ribosome entry site (IRES)-GFP tumor cells, and changes in tumor cell metabolism and in the TME were monitored. LDH-A downregulation significantly inhibited cell proliferation and subcutaneous tumor growth compared to control cells and tumors. However, total tumor lactate concentration did not differ significantly between LDH-A knockdown and control tumors, reflecting the lower vascularity, blood flow, and clearance of lactate from LDH-A knockdown tumors. Comparing treatment responses of MyC-CaP tumors with LDH-A depletion and/or anti-hPSMA CAR T cells showed that the dominant effect on tumor growth was LDH-A depletion. With anti-hPSMA CAR T cell treatment, tumor growth was significantly slower when combined with tumor LDH-A depletion and compared to control tumor growth (p < 0.0001). The lack of a complete tumor response in our animal model can be explained in part by (1) the lower activity of human CAR T cells against hPSMA-expressing murine tumors in a murine host, and (2) a loss of hPSMA antigen from the tumor cell surface in progressive generations of tumor cells.

10.
PLoS One ; 13(9): e0203965, 2018.
Article in English | MEDLINE | ID: mdl-30248111

ABSTRACT

Previous studies show that LDH-A knockdown reduces orthotopic 4T1 breast tumor lactate and delays tumor growth and the development of metastases in nude mice. Here, we report significant changes in the tumor microenvironment (TME) and a more robust anti-tumor response in immune competent BALB/c mice. 4T1 murine breast cancer cells were transfected with shRNA plasmids directed against LDH-A (KD) or a scrambled control plasmid (NC). Cells were also transduced with dual luciferase-based reporter systems to monitor HIF-1 activity and the development of metastases by bioluminescence imaging, using HRE-sensitive and constitutive promoters, respectively. The growth and metastatic profile of orthotopic 4T1 tumors developed from these cell lines were compared and a primary tumor resection model was studied to simulate the clinical management of breast cancer. Primary tumor growth, metastasis formation and TME phenotype were significantly different in LDH-A KD tumors compared with controls. In LDH-A KD cells, HIF-1 activity, hexokinase 1 and 2 expression and VEGF secretion were reduced. Differences in the TME included lower HIF-1α expression that correlated with lower vascularity and pimonidazole staining, higher infiltration of CD3+ and CD4+ T cells and less infiltration of TAMs. These changes resulted in a greater delay in metastases formation and 40% long-term survivors (>20 weeks) in the LDH-A KD cohort following surgical resection of the primary tumor. We show for the first time that LDH-depletion inhibits the formation of metastases and prolongs survival of mice through changes in tumor microenvironment that modulate the immune response. We attribute these effects to diminished HIF-1 activity, vascularization, necrosis formation and immune suppression in immune competent animals. Gene-expression analyses from four human breast cancer datasets are consistent with these results, and further demonstrate the link between glycolysis and immune suppression in breast cancer.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , L-Lactate Dehydrogenase/metabolism , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/physiology , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Knockdown Techniques , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/genetics , Lactate Dehydrogenase 5 , Lactic Acid/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis/immunology , Neoplasm Metastasis/pathology , Neovascularization, Pathologic , Signal Transduction
11.
Bioorg Med Chem Lett ; 24(21): 5070-5, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25264074

ABSTRACT

A novel Plumbagin-Isoniazid Analog (PLIHZ) and its ß-cyclodextrin inclusion complex (PLIHZCD) is prepared, characterized and evaluated for antitubercular activity under low and high iron conditions. PLIHZCD inclusion complex was characterized by Fourier Transform Infra-Red (FTIR), Differential Scanning Calorimetry (DSC), Powder X-ray Diffraction Studies (PXRD), (1)H NMR Studies and Scanning Electron Microscopic (SEM) analysis. The orientation and interaction of PLIHZ and CD was studied by molecular docking. PLIHZCD exhibited superior activity (MIC of 4 µg/ml) than PLIHZ and PL under 7H9 medium conditions. The standard anti-tubercular compound INH exhibited MIC values of 0.125 and 32 µg/ml under high and low iron conditions, whereas the conjugate PLIHZ exhibited MIC values of 0.5 and 2.0 µg/ml under high and low iron (corresponding to isoniazid resistant condition) indicating the advantage of combining plumbagin with INH overcoming resistance. The cyclodextrin conjugate offers improved aqueous solubility and thermal stability which are advantages in the treatment protocol.


Subject(s)
Antitubercular Agents/chemical synthesis , Isoniazid/chemistry , Naphthoquinones/chemistry , beta-Cyclodextrins/chemistry , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Calorimetry, Differential Scanning , Drug Stability , Microscopy, Electron, Scanning , Molecular Conformation , Molecular Dynamics Simulation , Mycobacterium tuberculosis/drug effects , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
12.
Carbohydr Polym ; 108: 135-44, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24751257

ABSTRACT

A series of ferrocenyl hydrazones and their ß-cyclodextrin (CD) inclusion complexes were prepared and evaluated for antitubercular activity under low and high iron conditions. The inclusion complexes were characterized by Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC), Powder X-ray Diffraction (PXRD), (1)H NMR, Scanning Electron Microscopy (SEM) and Cyclic Voltammetric (CV) studies. The inclusion complexes exhibited improved aqueous solubility as well as enhanced hydrolytic and thermal stability. They were also found to exhibit greater antitubercular activity than the parent ferrocenyl hydrazones against Mycobacterium tuberculosis under high iron conditions. When grown under low iron conditions these compounds exhibited lower activity suggesting requirement of iron-dependant peroxidase activation.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Hydrazones/chemistry , beta-Cyclodextrins/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Mycobacterium tuberculosis/drug effects , Spectroscopy, Fourier Transform Infrared
13.
Dalton Trans ; 41(30): 9192-201, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22717728

ABSTRACT

A series of eight pyruvate-based aroylhydrazones was synthesised and characterised. The reaction of the sodium salts of the aroylhydrazones with one equivalent of copper(II) chloride allowed the isolation of neutral 1:1 complexes in which the hydrazones occupy three basal coordination sites of a square pyramidal Cu(II)-centre, with two solvent molecules completing the coordination sphere. Structural details were obtained through the determination of the crystal structures of two representative pyruvate-based aroylhydrazones and three Cu(II) complexes. The evaluation of the antimycobacterial activity of the sodium salts of the eight pryruvate hydrazones showed that the compounds are essentially inactive in their anionic form. The corresponding neutral Cu(II) complexes, however, exhibit promising antimycobacterial activities if tested under high iron (8 µg Fe per mL) conditions. As observed for the related antimycobacterial agent isoniazid, the activity of the complexes decreases if the M. tuberculosis cells are grown under low iron (0.02 µg Fe per mL) conditions. The Cu(II) complexes may thus have a similar mode of action and may require an iron-containing heme-dependent peroxidase for activation.


Subject(s)
Antitubercular Agents/chemistry , Copper/chemistry , Hydrazones/chemistry , Pyruvic Acid/chemistry , Antitubercular Agents/pharmacology , Copper/pharmacology , Hydrazones/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/drug effects
14.
Bioorg Med Chem Lett ; 22(8): 2708-11, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22437116

ABSTRACT

A series of dihydropyrimidine derivatives were synthesized by utilizing Biginelli reaction and evaluated for their in vitro anticancer activity against MCF-7 human breast cancer (HBC) cell line using sulforhodamine B (SRB) assay and antitubercular activity against Mycobacterium tuberculosis (MTB) H(37)Rv using Microplate Alamar Blue Assay (MABA). Compounds 13p, 13t were exhibited 70.6% and 63.7% of HBC cell growth inhibition at 10 µM concentration. Interestingly compound 13p was also found to be the most potent in the series against MTB H(37)Rv with MIC value of 0.125 µg/mL.


Subject(s)
Antineoplastic Agents , Antitubercular Agents , Mycobacterium tuberculosis/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Breast Neoplasms/drug therapy , Carbamates/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , Humans , Lipids/chemistry , Microbial Sensitivity Tests , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...