Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Monit Assess ; 195(7): 852, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37326797

ABSTRACT

Increasing reports of cyanobacteria or cyanotoxins around the world expose a major threat for the environment, animal, and human health. Current water treatment processes are ineffective at eliminating cyanotoxins; hence, risk management relies mostly on early detection and on the development of specific regulatory frameworks. In developed countries, well-documented monitoring activities offer a good assessment of the cyanobacterial and/or cyanotoxin status and are used to prevent intoxications. In developing countries such as Peru, despite their potential threat to the environment and public health, cyanobacteria and cyanotoxins are still poorly studied. We found that the regulatory measures regarding cyanobacteria and/or cyanotoxin are almost non-existent. We also present and discuss some examples of recent monitoring efforts underwent by isolated local authorities and scientific reports that, whereas limited, may provide some important insights to be considered nationally. A revision of the available information of planktonic cyanobacteria or cyanotoxins in Peruvian freshwater lentic water bodies revealed a total of 50 documented reports of 15 different genera across 19 water bodies, including the reported highly toxic Dolichospermum and Microcystis. A unique case of microcystin-LR has been documented. We propose some recommendations to be implemented to improve potential toxic cyanobacteria risk management that include incorporating a widespread monitoring of cyanobacterial communities in lakes and reservoirs used for human consumption via specific guidelines. Aligning Peruvian regulations on cyanobacteria and cyanotoxins to international standards may also support law enforcement and ensure compliance.


Subject(s)
Cyanobacteria , Plankton , Humans , Animals , Peru , Prevalence , Environmental Monitoring , Microcystins/analysis , Cyanobacteria Toxins , Lakes , Policy Making
2.
New Phytol ; 232(4): 1849-1862, 2021 11.
Article in English | MEDLINE | ID: mdl-34455590

ABSTRACT

The functioning of present ecosystems reflects deep evolutionary history of locally cooccurring species if their functional traits show high phylogenetic signal (PS). However, we do not understand what drives local PS. We hypothesize that local PS is high in undisturbed and stressful habitats, either due to ongoing local assembly of species that maintained ancestral traits, or to past evolutionary maintenance of ancestral traits within habitat species-pools, or to both. We quantified PS and diversity of 10 traits within 6704 local plant communities across 38 Dutch habitat types differing in disturbance or stress. Mean local PS varied 50-fold among habitat types, often independently of phylogenetic or trait diversity. Mean local PS decreased with disturbance but showed no consistent relationship to stress. Mean local PS exceeded species-pool PS, reflecting nonrandom subsampling from the pool. Disturbance or stress related more strongly to mean local than to species-pool PS. Disturbed habitats harbour species with evolutionary divergent trait values, probably driven by ongoing, local assembly of species: environmental fluctuations might maintain different trait values within lineages through an evolutionary storage effect. If functional traits do not reflect phylogeny, ecosystem functioning might not be contingent on the presence of particular lineages, and lineages might establish evolutionarily novel interactions.


Subject(s)
Biological Evolution , Ecosystem , Biodiversity , Phenotype , Phylogeny , Plants/genetics
3.
Glob Chang Biol ; 26(5): 2756-2784, 2020 05.
Article in English | MEDLINE | ID: mdl-32133744

ABSTRACT

In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.


Subject(s)
Lakes , Phytoplankton , Climate Change , Ecosystem , Rivers
4.
ISME J ; 13(5): 1133-1143, 2019 05.
Article in English | MEDLINE | ID: mdl-30607028

ABSTRACT

Here we aim to incorporate trait-based information into the modern coexistence framework that comprises a balance between stabilizing (niche-based) and equalizing (fitness) mechanisms among interacting species. Taking the modern coexistence framework as our basis, we experimentally tested the effect of size differences among species on coexistence by using fifteen unique pairs of resident vs. invading cyanobacteria, resulting in thirty unique invasibility tests. The cyanobacteria covered two orders of magnitude differences in size. We found that both niche and fitness differences increased with size differences. Niche differences increased faster with size differences than relative fitness differences and whereas coexisting pairs showed larger size differences than non-coexisting pairs, ultimately species coexistence could not be predicted on basis of size differences only. Our findings suggest that size is more than a key trait controlling physiological and population-level aspects of phytoplankton, it is also relevant for community-level phenomena such as niche and fitness differences which influence coexistence and biodiversity.


Subject(s)
Cyanobacteria/physiology , Phytoplankton/physiology , Biodiversity , Cyanobacteria/cytology , Ecosystem , Genetic Fitness , Phenotype , Phytoplankton/cytology
5.
Proc Biol Sci ; 282(1799): 20141745, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25473009

ABSTRACT

The competition-relatedness hypothesis (CRH) predicts that the strength of competition is the strongest among closely related species and decreases as species become less related. This hypothesis is based on the assumption that common ancestry causes close relatives to share biological traits that lead to greater ecological similarity. Although intuitively appealing, the extent to which phylogeny can predict competition and co-occurrence among species has only recently been rigorously tested, with mixed results. When studies have failed to support the CRH, critics have pointed out at least three limitations: (i) the use of data poor phylogenies that provide inaccurate estimates of species relatedness, (ii) the use of inappropriate statistical models that fail to detect relationships between relatedness and species interactions amidst nonlinearities and heteroskedastic variances, and (iii) overly simplified laboratory conditions that fail to allow eco-evolutionary relationships to emerge. Here, we address these limitations and find they do not explain why evolutionary relatedness fails to predict the strength of species interactions or probabilities of coexistence among freshwater green algae. First, we construct a new data-rich, transcriptome-based phylogeny of common freshwater green algae that are commonly cultured and used for laboratory experiments. Using this new phylogeny, we re-analyse ecological data from three previously published laboratory experiments. After accounting for the possibility of nonlinearities and heterogeneity of variances across levels of relatedness, we find no relationship between phylogenetic distance and ecological traits. In addition, we show that communities of North American green algae are randomly composed with respect to their evolutionary relationships in 99% of 1077 lakes spanning the continental United States. Together, these analyses result in one of the most comprehensive case studies of how evolutionary history influences species interactions and community assembly in both natural and experimental systems. Our results challenge the generality of the CRH and suggest it may be time to re-evaluate the validity and assumptions of this hypothesis.


Subject(s)
Biological Evolution , Chlorophyta/physiology , Phylogeny , Chlorophyta/genetics , Ecosystem , Population Dynamics , Species Specificity , Transcriptome
6.
PLoS One ; 8(9): e72561, 2013.
Article in English | MEDLINE | ID: mdl-24023751

ABSTRACT

Despite their importance as ecosystem drivers, our understanding of the influence of bacterial diversity on ecosystem functioning is limited. After identifying twelve bacterial strains from two petroleum-contaminated sites, we experimentally explored the impact of biodiversity on total density by manipulating the number of strains in culture. Irrespective of the origin of the bacteria relative to the contaminant, biodiversity positively influenced total density. However, bacteria cultured in the crude oil of their origin (autochthonous) reached higher densities than bacteria from another origin (allochthonous) and the relationship between diversity and density was stronger for autochthonous bacteria. By measuring the relative contribution of each strain to total density we showed that the observed positive effect of increasing diversity on total density was mainly due to positive interactions among species and not the presence of a particular species. Our findings can be explained by the complex chemical composition of crude oil and the necessity of a diverse array of organisms with complementary enzymatic capacities to achieve its degradation. The long term exposure to a contaminant may have allowed different bacteria to become adapted to the use of different fractions of the crude, resulting in higher complementarity in resource use in autochthonous bacteria compared to allochthonous ones. Our results could help improve the success of bioaugmentation as a bioremediation technique by suggesting the use of a diversified set of autochthonous organisms.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Ecosystem , Bacteria/classification , Biodiversity
7.
Microb Ecol ; 66(4): 897-905, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24013213

ABSTRACT

Bacterial infections are the second largest cause of mortality in shrimp hatcheries. Among them, bacteria from the genus Vibrio constitute a major threat. As the use of antibiotics may be ineffective and banned from the food sector, alternatives are required. Historically, phage therapy, which is the use of bacteriophages, is thought to be a promising option to fight against bacterial infections. However, as for antibiotics, resistance can be rapidly developed. Since the emergence of resistance is highly undesirable, a formal characterization of the dynamics of its acquisition is mandatory. Here, we explored the co-evolutionary dynamics of resistance between the bacteria Vibrio sp. CV1 and the phages V1G, V1P1, and V1P2. Single-phage treatments as well as a cocktail composed of the three phages were considered. We found that in the presence of a single phage, bacteria rapidly evolved resistance, and the phages decreased their infectivity, suggesting that monotherapy may be an inefficient treatment to fight against Vibrio infections in shrimp hatcheries. On the contrary, the use of a phage cocktail considerably delayed the evolution of resistance and sustained phage infectivity for periods in which shrimp larvae are most susceptible to bacterial infections, suggesting the simultaneous use of multiple phages as a serious strategy for the control of vibriosis. These findings are very promising in terms of their consequences to different industrial and medical scenarios where bacterial infections are present.


Subject(s)
Bacterial Infections/veterinary , Bacteriophages/physiology , Biological Evolution , Biological Therapy/veterinary , Penaeidae/microbiology , Vibrio/genetics , Vibrio/virology , Animals , Aquaculture , Bacterial Infections/microbiology , Bacterial Infections/therapy , Bacteriophages/classification , Bacteriophages/genetics , Humans
8.
Proc Biol Sci ; 280(1768): 20131548, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23945692

ABSTRACT

The impact of biodiversity on the stability of ecological communities has been debated among biologists for more than a century. Recently summarized empirical evidence suggests that biodiversity tends to enhance the temporal stability of community-level properties such as biomass; however, the underlying mechanisms driving this relationship remain poorly understood. Here, we report the results of a microcosm study in which we used simplified systems of freshwater microalgae to explore how the phylogenetic relatedness of species influences the temporal stability of community biomass by altering the nature of their competitive interactions. We show that combinations of two species that are more evolutionarily divergent tend to have lower temporal stability of biomass. In part, this is due to negative 'selection effects' in which bicultures composed of distantly related species are more likely to contain strong competitors that achieve low biomass. In addition, bicultures of distantly related species had on average weaker competitive interactions, which reduced compensatory dynamics and decreased the stability of community biomass. Our results demonstrate that evolutionary history plays a key role in controlling the mechanisms, which give rise to diversity-stability relationships. As such, patterns of shared ancestry may help us predict the ecosystem-level consequences of biodiversity loss.


Subject(s)
Chlorophyta/physiology , Fresh Water , Biodiversity , Chlorophyta/classification , Chlorophyta/genetics , Ecosystem , Phylogeny , Population Dynamics , Species Specificity
9.
Ecology ; 94(11): 2529-36, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24400504

ABSTRACT

Our understanding of how biodiversity influences ecosystem functioning is entering a new stage of its development through the incorporation of information about the evolutionary relatedness of species. Bacteria are prime providers of essential ecosystem services, representing an excellent model system to perform biodiversity-ecosystem function research. By using bacteria isolated from petroleum-contaminated sites, we show that communities composed of poorly related species were more productive than those containing highly related species. The nature of the forces controlling this positive effect of phylogenetic diversity on community productivity depended on the number of species in culture. In communities of two species the positive effect of phylogenetic diversity on productivity was driven by changes in the selection effect. Communities of two distantly related species were dominated by the most productive species in monoculture, whereas communities of two closely related species were dominated by the less productive species in monoculture. In communities of four species the positive effect of phylogenetic diversity on productivity was driven by changes in the complementarity effect. In communities composed of four distantly related species the influence of positive interactions such as facilitation, cross-feeding, and niche partitioning seemed to outweigh the influence of negative interactions such as interference. As a consequence the proportion of species favored by the presence of other species increased as they became less related. Multiple facets of biodiversity may influence ecosystem functioning. Here, we present evidence of an interaction between phylogenetic and taxonomic diversity on community productivity, underlining the importance of considering multiple aspects of biodiversity when studying its impact on ecosystem functioning.


Subject(s)
Bacteria/genetics , Biodiversity , Phylogeny
10.
Nature ; 486(7401): 59-67, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22678280

ABSTRACT

The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world's nations declared that human actions were dismantling the Earth's ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.


Subject(s)
Biodiversity , Extinction, Biological , Human Activities , Animals , Climate Change/statistics & numerical data , Consensus , Ecology/methods , Ecology/trends , Humans
11.
PLoS One ; 7(6): e37620, 2012.
Article in English | MEDLINE | ID: mdl-22701572

ABSTRACT

The ecological insurance hypothesis predicts a positive effect of species richness on ecosystem functioning in a variable environment. This effect stems from temporal and spatial complementarity among species within metacommunities coupled with optimal levels of dispersal. Despite its importance in the context of global change by human activities, empirical evidence for ecological insurance remains scarce and controversial. Here we use natural aquatic bacterial communities to explore some of the predictions of the spatial and temporal aspects of the ecological insurance hypothesis. Addressing ecological insurance with bacterioplankton is of strong relevance given their central role in fundamental ecosystem processes. Our experimental set up consisted of water and bacterioplankton communities from two contrasting coastal lagoons. In order to mimic environmental fluctuations, the bacterioplankton community from one lagoon was successively transferred between tanks containing water from each of the two lagoons. We manipulated initial bacterial diversity for experimental communities and immigration during the experiment. We found that the abundance and production of bacterioplankton communities was higher and more stable (lower temporal variance) for treatments with high initial bacterial diversity. Immigration was only marginally beneficial to bacterial communities, probably because microbial communities operate at different time scales compared to the frequency of perturbation selected in this study, and of their intrinsic high physiologic plasticity. Such local "physiological insurance" may have a strong significance for the maintenance of bacterial abundance and production in the face of environmental perturbations.


Subject(s)
Animal Migration/physiology , Bacteria , Biodiversity , Biota , Models, Biological , Plankton/physiology , Analysis of Variance , Denaturing Gradient Gel Electrophoresis , Flow Cytometry , France , Marine Biology , Salinity , Species Specificity
12.
Nature ; 469(7328): 89-92, 2011 Jan 06.
Article in English | MEDLINE | ID: mdl-21131946

ABSTRACT

The relationship between biodiversity and ecosystem functioning (BEF) has become a cornerstone of community and ecosystem ecology and an essential criterion for making decisions in conservation biology and policy planning. It has recently been proposed that evolutionary history should influence the BEF relationship because it determines species traits and, thus, species' ability to exploit resources. Here we test this hypothesis by combining experimental evolution with a BEF experiment. We isolated 20 bacterial strains from a marine environment and evolved each to be generalists or specialists. We then tested the effect of evolutionary history on the strength of the BEF relationship with assemblages of 1 to 20 species constructed from the specialists, generalists and ancestors. Assemblages of generalists were more productive on average because of their superior ability to exploit the environmental heterogeneity. The slope of the BEF relationship was, however, stronger for the specialist assemblages because of enhanced niche complementarity. These results show how the BEF relationship depends critically on the legacy of past evolutionary events.


Subject(s)
Bacterial Physiological Phenomena , Biodiversity , Biological Evolution , Ecosystem , Aquatic Organisms/classification , Aquatic Organisms/isolation & purification , Aquatic Organisms/physiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Conservation of Natural Resources , Models, Biological , Molecular Typing , RNA, Ribosomal, 16S/genetics , Spain , Species Specificity
13.
Proc Biol Sci ; 277(1692): 2339-45, 2010 Aug 07.
Article in English | MEDLINE | ID: mdl-20335204

ABSTRACT

The influence of biodiversity on ecosystem functioning is a major concern of ecological research. However, the biodiversity-ecosystem functioning relationship has very often been studied independently from the mechanisms allowing coexistence. By considering the effects of dispersal and niche partitioning on diversity, the metacommunity perspective predicts a spatial scale-dependence of the shape of the relationship. Here, we present experimental evidence of such scale-dependent patterns. After approximately 500 generations of diversification in a spatially heterogeneous environment, we measured functional diversity (FD) and productivity at both local and regional scales in experimental source-sink metacommunities of the bacterium Pseudomonas fluorescens SBW25. At the regional scale, environmental heterogeneity yielded high levels of FD and we observed a positive correlation between diversity and productivity. At the local scale, intermediate dispersal increased local FD through a mass effect but there was no correlation between diversity and productivity. These experimental results underline the importance of considering the mechanisms maintaining biodiversity and the appropriate spatial scales in understanding its relationship with ecosystem functioning.


Subject(s)
Biodiversity , Ecosystem , Population Dynamics , Pseudomonas fluorescens/growth & development , Animals , Ecology/methods , Pseudomonas fluorescens/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...