Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 401: 130744, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677384

ABSTRACT

Paper sludge biomass represents an underutilized feedstock rich in pulped and processed cellulose which is currently a waste stream with significant disposal cost to industry for landfilling services. Effective fractionation of the cellulose from paper sludge presents an opportunity to yield cellulose as feedstock for value-added processes. A novel approach to cellulose fractionation is the sidehill screening system, herein studied at the pilot-plant scale. Composition analysis determined ash removal and carbohydrate retention of both sidehill and high-performance benchtop screening systems. Sidehill screening resulted in greater carbohydrates retention relative to benchtop screening (90% vs 66%) and similar ash removal (95% vs 98%). Techno-economic analysis for production of sugar syrup yielded a minimum selling price of $331/metric ton of sugar syrup including disposal savings, significantly less than a commercial sugar syrup without fractionation. Sensitivity analysis showed that screening conditions played a significant role in economic feasibility for cellulosic yield and downstream processes.


Subject(s)
Biomass , Cellulose , Paper , Sewage , Pilot Projects , Cellulose/chemistry , Chemical Fractionation
2.
Carbohydr Polym ; 329: 121799, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286532

ABSTRACT

Optimizing drying energy in the forest products industry is critical for integrating lignocellulosic feedstocks across all manufacturing sectors. Despite substantial efforts to reduce thermal energy consumption during drying, further enhancements are possible. Cellulose, the main component of forest products, is Earth's most abundant biopolymer and a promising renewable feedstock. This study employs all-atom molecular dynamics (MD) simulations to explore the structural dynamics of a small Iß-cellulose microcrystallite and surrounding water layers during drying. Molecular and atomistic profiles revealed localized water near the cellulose surface, with water structuring extending beyond 8 Å into the water bulk, influencing solvent-accessible surface area and solvation energy. With increasing temperature, there was a ∼20 % reduction in the cellulose surface available for interaction with water molecules, and a ∼22 % reduction in solvation energy. The number of hydrogen bonds increased with thicker water layers, facilitated by a "bridging" effect. Electrostatic interactions dominated the intermolecular interactions at all temperatures, creating an energetic barrier that hinders water removal, slowing the drying processes. Understanding temperature-dependent cellulose-water interactions at the molecular level will help in designing novel strategies to address drying energy consumption, advancing the adoption of lignocellulosics as viable manufacturing feedstocks.

3.
Adv Colloid Interface Sci ; 318: 102936, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37331091

ABSTRACT

Efficient utilization of forestry, agriculture, and marine resources in various manufacturing sectors requires optimizing fiber transformation, dewatering, and drying energy consumption. These processes play a crucial role in reducing the carbon footprint and boosting sustainability within the circular bioeconomy framework. Despite efforts made in the paper industry to enhance productivity while conserving resources and energy through lower grammage and higher machine speeds, reducing thermal energy consumption during papermaking remains a significant challenge. A key approach to address this challenge lies in increasing dewatering of the fiber web before entering the dryer section of the paper machine. Similarly, the production of high-value-added products derived from alternative lignocellulosic feedstocks, such as nanocellulose and microalgae, requires advanced dewatering techniques for techno-economic viability. This critical and systematic review aims to comprehensively explore the intricate interactions between water and lignocellulosic surfaces, as well as the leading technologies used to enhance dewatering and drying. Recent developments in technologies to reduce water content during papermaking, and advanced dewatering techniques for nanocellulosic and microalgal feedstocks are addressed. Existing research highlights several fundamental and technical challenges spanning from the nano- to macroscopic scales that must be addressed to make lignocellulosics a suitable feedstock option for industry. By identifying alternative strategies to improve water removal, this review intends to accelerate the widespread adoption of lignocellulosics as feasible manufacturing feedstocks. Moreover, this review aims to provide a fundamental understanding of the interactions, associations, and bonding mechanisms between water and cellulose fibers, nanocellulosic materials, and microalgal feedstocks. The findings of this review shed light on critical research directions necessary for advancing the efficient utilization of lignocellulosic resources and accelerating the transition towards sustainable manufacturing practices.


Subject(s)
Forestry , Microalgae , Lignin , Agriculture/methods , Water
4.
Heliyon ; 9(3): e14122, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36950652

ABSTRACT

Lignocellulosic materials are widely used for food packaging due to their renewable and biodegradable nature. However, their porous and absorptive properties can lead to the uptake and retention of bacteria during food processing, transportation, and storage, which pose a potential risk for outbreaks of foodborne disease. Thus, it is of great importance to understand how bacteria proliferate and survive on lignocellulosic surfaces. The aim of this research was to compare the growth and survivability of Salmonella Typhimurium and Listeria innocua on bleached and unbleached paper packaging materials. Two different paper materials were fabricated to simulate linerboard from fully bleached and unbleached market pulps and inoculated with each bacterium at high bacterial loads (107 CFU). The bacteria propagated during the first 48 h of incubation and persisted at very high levels (>107 CFU/cm2) for 40 days for all paper and bacterium types. However, the unbleached paper allowed for a greater degree of bacterial growth to occur compared to bleached paper, suspected to be due to the more hydrophobic nature of the unbleached, lignin-containing fibers. Several other considerations may also alter the behavior of bacteria on lignocellulosic materials, such as storage conditions, nutrient availability, and chemical composition of the fibers.

5.
Environ Sci Pollut Res Int ; 29(40): 60584-60599, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35420340

ABSTRACT

Nonwoven products are widely used in disposable products, such as wipes, diapers, and masks. Microfibers shed from these products in the aquatic and air environment have not been fully described. In the present study, 15 commercial single-use nonwoven products (wipes) and 16 meltblown nonwoven materials produced in a pilot plant were investigated regarding their microfiber generation in aquatic and air environments and compared to selected textile materials and paper tissue materials. Microfibers shed in water were studied using a Launder Ometer equipment (1-65 mg of microfibers per gram material), and microfibers shed in air were evaluated using a dusting testing machine that shakes a piece of the nonwoven back and forth (~ 4 mg of microfibers per gram material). The raw materials and bonding technologies affected the microfiber generation both in water and air conditions. When the commercial nonwovens contained less natural cellulosic fibers, less microfibers were generated. Bonding with hydroentangling and/or double bonding by two different bonding methods could improve the resistance to microfiber generation. Meltblown nonwoven fabrics generated fewer microfibers compared to the other commercial nonwovens studied here, and the manufacturing factors, such as DCD (die-to-collector distance) and air flow rate, affected the tendency of microfiber generation. The results suggest that it is possible to control the tendency of microfiber shedding through the choice of operating parameters during nonwoven manufacturing processes.


Subject(s)
Textiles , Water Pollutants, Chemical , Wastewater , Water , Water Pollutants, Chemical/analysis
6.
Environ Sci Technol ; 56(7): 4578-4586, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35274948

ABSTRACT

Dissolving pulp (DP) is a specialty pulp product from a variety of lignocellulosic biomass (i.e., hardwoods (HW) and softwoods (SW)) with a broad range of applications. Conducting life cycle assessment (LCA) for DP end applications (e.g., textile products, specialty plastics) is challenging due to the lack of life cycle inventory (LCI) data and environmental information associated with different grades. This research addresses this challenge using process simulations to generate LCI for different DP grades (e.g., acetate and viscose) made from HW and SW, respectively. The LCA results show that biomass feedstock directly affects the environmental impacts of DP. For instance, HW acetate grade has higher global warming potential than SW acetate but lower environmental impacts in other categories related to ecosystems and human health. This HW versus SW comparison has similar results for viscose DP in all impact categories except eutrophication. Additionally, a hotspot analysis identifies that on-site emissions and chemicals are the main contributors to the environmental impacts across all grades in this study. The results and LCI data generated in this work provide critical information to support future LCA and sustainability assessment for end-products derived from DP.


Subject(s)
Ecosystem , Global Warming , Animals , Environment , Eutrophication , Humans , Life Cycle Stages
7.
Biopolymers ; 112(5): e23425, 2021 May.
Article in English | MEDLINE | ID: mdl-33793963

ABSTRACT

Replacing synthetic polymers with renewable alternatives is a critical challenge for the packaging industry. This research investigated the use of leaf-based proteins as a sustainable co-binder in the coating formulations for paper-based packaging and other applications. Protein isolates from tobacco leaf and alfalfa concentrates were characterized using the Pierce protein assay, Kjeldahl nitrogen, and gel electrophoresis. The proteins were tested as co-binders in a typical latex-based paper coating formulation. The rheology and water retention properties of the wet coating and the surface, optical, structural, and strength properties of coated papers were measured. The coating performance was affected by the purity, solubility, and molecular weight of the tobacco protein and exhibited a shear-thinning behavior with lower water retention than soy protein. Analysis by scanning electron microscopy and time of flight secondary ion mass spectroscopy on the dried coating layer containing tobacco protein showed enhanced porosity (advantageous for package glueability) relative to the control latex coating. The tobacco protein offers adequate coverage and coating pigment distribution, indicating that this protein can be a suitable option in coatings for packaging applications.


Subject(s)
Nicotiana/metabolism , Paper , Plant Proteins/chemistry , Coated Materials, Biocompatible/chemistry , Molecular Weight , Plant Leaves/metabolism , Plant Proteins/isolation & purification , Porosity , Protein Stability , Soybean Proteins/chemistry , Viscosity
8.
Mar Pollut Bull ; 165: 112030, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33561711

ABSTRACT

The presence and biodegradability of textile microfibers shed during laundering or use is an important environmental issue. In this research, the influence of common textile finishes on the persistence of cotton fibers in an aerobic aquatic environment was assessed. The biodegradation of cotton knitted fabrics with different finishes, silicone softener, durable press, water repellent, and a blue reactive dye was evaluated. The rate of biodegradation decreased with durable press and water repellant finishing treatments. In terms of the final extent of biodegradation, there was no significant difference between the samples. All samples reached more than 60% biodegradation in 102 days. The biodegradation rates were in agreement with observed trends of the same samples for cellulase mediated hydrolysis and cellulase adsorption experiments, indicating the finishes impact the initial adsorption of enzymes excreted by the microorganisms and the initial rates of biodegradation, however despite this the cellulosic material maintains its biodegradability.


Subject(s)
Laundering , Adsorption , Clothing , Coloring Agents , Cotton Fiber , Polyesters , Textiles
9.
Carbohydr Polym ; 254: 117430, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33357905

ABSTRACT

This study aims to understand the effect of micro- and nanofibrillated cellulose (MNFC) on the tensile index, softness, and water absorbency of tissue paper. MNFC was produced from four different fiber sources. The results show that MNFC acts as an effective strength enhancer at the expense of a reduced water absorbency and softness. The impact of the fiber source on MNFC manufacturing cost and the trade-off with performance was also investigated. MNFCs produced from southern bleached hardwood kraft, northern bleached softwood kraft, and deinked pulp exhibited similar performance trends with the MNFC from the deinked pulp having a significantly lower cost. This suggests that MNFCs with similar degrees of fibrillation may be used interchangeably regardless of the fiber source, revealing the possibility to minimize MNFC manufacturing costs based on fiber selection. MNFC produced from bleached Eucalyptus kraft showed the lowest degree of fibrillation and the lowest strength improvements among the MNFCs evaluated.


Subject(s)
Cellulose/chemistry , Eucalyptus/chemistry , Nanofibers/chemistry , Paper , Wood/chemistry , Cellulose/isolation & purification , Humans , Hydrolysis , Hygiene , Materials Testing , Wettability
10.
Ind Eng Chem Res ; 60(3): 1112-1136, 2021.
Article in English | MEDLINE | ID: mdl-35340740

ABSTRACT

The human population is generally subjected to diverse pollutants and contaminants in the environment like those in the air, soil, foodstuffs, and drinking water. Therefore, the development of novel purification techniques and efficient detection devices for pollutants is an important challenge. To date, experts in the field have designed distinctive analytical procedures for the detection of pollutants including gas chromatography/mass spectrometry and atomic absorption spectroscopy. While the mentioned procedures enjoy high sensitivity, they suffer from being laborious, expensive, require advanced skills for operation, and are inconvenient to deploy as a result of their massive size. Therefore, in response to the above-mentioned limitations, electrochemical sensors are being developed that enjoy robustness, selectivity, sensitivity, and real-time measurements. Considerable advancements in nanomaterials-based electrochemical sensor platforms have helped to generate new technologies to ensure environmental and human safety. Recently, investigators have expanded considerable effort to utilize polymer nanocomposites for building the electrochemical sensors in view of their promising features such as very good electrocatalytic activities, higher electrical conductivity, and effective surface area in comparison to the traditional polymers. Herein, the first section of this review briefly discusses the most important methods for polymer nanocomposites synthesis, such as in situ polymerization, direct mixing of polymer and nanofillers (melt-mixing and solution-mixing), sol-gel, and electrochemical methods. It then summarizes the current utilization of polymer nanocomposites for the preparation of electrochemical sensors as a novel approach for monitoring and detecting environmental pollutants which include heavy metal ions, pesticides, phenolic compounds, nitroaromatic compounds, nitrite, and hydrazine in different mediums. Finally, the current challenges and future directions for the polymer nanocomposites-based electrochemical sensing of environmental pollutants are outlined.

11.
Environ Pollut ; 272: 115998, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33199065

ABSTRACT

The influence of common textile finishes on cotton fabrics on the generation of microfibers during laundering was assessed. Microfiber release was determined to be in the range of 9000-14,000 particles per gram of cotton fabric. Cotton knitted fabrics treated with softener and durable press generate more microfibers (1.30-1.63 mg/g fabric) during laundering by mass and number than untreated fabric (0.73 mg/g fabric). The fabrics treated with softener generated the longest average microfiber length (0.86 mm), whereas durable press and water repellent treatments produced the shortest average microfiber length (0.62 and 0.63 mm, respectively). In general, the changes in the mechanical properties of the fibers and fabrics due to the finishing treatments are the main factor affecting the microfiber release. The abrasion resistance of the fabrics decreases for durable press treatments and water repellent treatments due to the brittleness in the structure originated by the crosslinking treatment. In the case of the softener treatment, the fabric surface is soft and smooth decreasing the friction coefficient between fibers favoring the fibers loosening from the textile and resulting in a high tendency for fuzz formation and microfiber release. These findings are useful for the textile industry in the design and selection of materials and treatments for the reduction of synthetic or natural microfiber shedding from textiles.


Subject(s)
Laundering , Coloring Agents , Physical Phenomena , Polyesters , Textiles
12.
J Agric Food Chem ; 68(32): 8710-8719, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32633505

ABSTRACT

Hydrogels were synthesized by a copolymerization reaction of nanofibrillated cellulose (CNF) with acrylic acid (AA) and acrylamide (AM) and N,N-methylene-bis-acrylamide (MBA) as a cross-linker and their absorption performance as a function of composition was determined. Hydrogels with 4% by weight CNF had swelling of about 250 g/g and with 7% CNF about 200 g/g for water. Thermodynamic and kinetic studies of the reaction pathways and the electronic properties of the cellulose and monomers were investigated through density functional theory calculations. Thermodynamic investigations revealed that the radical formation of cellulose that initiates the hydrogel process can occur through the breaking of the homolytic covalent bonds C6-OH and C3-OH. The results show that the reaction of CNF with monomers is thermodynamically favorable in the decreasing order of AM, AA, and MBA. The kinetic study also indicates that the reaction kinetics of CNF with AM is faster than with AA which is much faster than with MBA. Overall, this study has elucidated some of the key chemical characteristics that impact the derivatization of nanocellulose structures to produce advanced renewable bioproducts.


Subject(s)
Cellulose/chemistry , Hydrogels/chemical synthesis , Nanofibers/chemistry , Hydrogels/chemistry , Hydrogen-Ion Concentration , Kinetics , Polymerization , Temperature , Thermodynamics
13.
Mar Pollut Bull ; 151: 110826, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32056618

ABSTRACT

The aerobic biodegradation of common textiles that shed microfibers during laundering was evaluated under the action of microbes found in the environment, such as lake and seawater, and activated sludge at a low concentration from a wastewater treatment plant (WWTP). Under these conditions, the biodegradation potential was the same in all the experiments: Microcrystalline Cellulose (MCC) > Cotton > Rayon > Polyester/Cotton â‰« Polyester. Nevertheless, for cotton and rayon yarns, >70% biodegradation was achieved with activated sludge at low concentration and lake water, whereas in seawater, about 50% degradation was reached. Polyester did not appreciably degrade. The biodegradation results herein indicate potential not absolutes in nature. The bacterial diversity analyses in the different biodegradation inoculums show that there are distinct bacterial communities related to the assimilation and mineralization of complex carbohydrates that were promoted with the cellulosic MCC, cotton, and rayon samples different than the polyester sample.


Subject(s)
Laundering , Microbiota , Textiles , Water Pollutants/analysis , Biodegradation, Environmental , Cellulose , Clothing , Polyesters
14.
Biotechnol Bioeng ; 117(4): 924-932, 2020 04.
Article in English | MEDLINE | ID: mdl-31885079

ABSTRACT

Mechanical refining results in fiber deconstruction and modifications that enhance enzyme accessibility to carbohydrates. Further understanding of the morphological changes occurring to biomass during mechanical refining and the impacts of these changes on enzymatic digestibility is necessary to maximize yields and reduce energy consumption. Although the degree of fiber length reduction relative to fibrillation/delamination can be impacted by manipulating refining variables, mechanical refining of any type (PFI, disk, and valley beater) typically results in both phenomena. Separating the two is not straightforward. In this study, fiber fractionation based on particle size performed after mechanical refining of high-lignin pulp was utilized to successfully elucidate the relative impact of fibrillation/delamination and fiber cutting phenomena during mechanical refining. Compositional analysis showed that fines contain significantly more lignin than larger size fractions. Enzymatic hydrolysis results indicated that within fractions of uniform fiber length, fibrillation/delamination due to mechanical refining increased enzymatic conversion by 20-30 percentage points. Changes in fiber length had little effect on digestibility for fibers longer than ~0.5 mm. However, the digestibility of the fines fractions was high for all levels of refining even with the high-lignin content.


Subject(s)
Biomass , Cellulase/metabolism , Lignin , Wood , Chemical Fractionation , Hydrolysis , Lignin/analysis , Lignin/chemistry , Lignin/metabolism , Wood/analysis , Wood/chemistry , Wood/metabolism
15.
Mar Pollut Bull ; 142: 394-407, 2019 May.
Article in English | MEDLINE | ID: mdl-31232317

ABSTRACT

The effect of fiber type (cotton, polyester, and rayon), temperature, and use of detergent on the number of microfibers released during laundering of knitted fabrics were studied during accelerated laboratory washing (Launder-Ometer) and home laundering experiments. Polyester and cellulose-based fabrics all shed significant amounts of microfibers and shedding levels were increased with higher water temperature and detergent use. Cellulose-based fabrics released more microfibers (0.2-4 mg/g fabric) during accelerated laundering than polyester (0.1-1 mg/g fabric). Using well-controlled aquatic biodegradation experiments it was shown that cotton and rayon microfibers are expected to degrade in natural aquatic aerobic environments whereas polyester microfibers are expected to persist in the environment for long periods of time.


Subject(s)
Cellulose/metabolism , Laundering , Polyesters/metabolism , Textiles , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Cellulose/chemistry , Cotton Fiber , Polyesters/chemistry , Water/chemistry , Water Pollutants, Chemical/chemistry
16.
RSC Adv ; 9(55): 31819-31827, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-35530764

ABSTRACT

The production of a high-value xylooligosaccharide (XOS) prebiotic product from lignocellulosic autohydrolysate requires processing for the removal of non-carbohydrate components such as lignin and furfural. In this research, the nature of XOS dissolved in autohydrolysate is evaluated including the XOS degree of polymerization (DP) distribution and potential covalent association between XOS and lignin (LCC). The impact of these factors on the yield of XOS during treatment of Miscanthus autohydrolysate with hydrophobic resin is assessed. Over 30% of the XOS in autohydrolysate was found to be likely associated with lignin ("tied" XOS), all of which was removed during hydrophobic resin treatment along with over 90% of the dissolved lignin. However, loss of dissolved XOS during resin treatment was found to not be due solely to XOS association with lignin. Over 50% of the "free," non-lignin-associated XOS was also removed by resin treatment. Interaction between "free" XOS and the hydrophobic resin was found to be highly dependent on DP with higher DP XOS being removed far more readily than low DP XOS. Over 80% of dissolved "free" XOS with a DP of six and above (X6+) was removed from autohydrolysate during treatment while only 17% of xylose (X1) was removed. Efforts to understand the interaction between the hydrophobic resin and XOS and to improve the recovery of XOS during hydrophobic resin treatment are presented.

17.
Int J Biol Macromol ; 104(Pt A): 564-575, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28602991

ABSTRACT

Currently, there is very strong interest to replace synthetic polymers with biological macromolecules of natural source for applications that interact with humans or the environment. This research describes the development of drug delivery hydrogels from natural polymers, starch, lignin and hemicelluloses by means of reactive extrusion. The hydrogels show a strong swelling ability dependent on pH which may be used to control diffusion rates of water and small molecules in and out of the gel. Also the hydrogels degradation rates were studied in a physiological solution (pH 7.4) for 15days. The results indicated that for all three macromolecules, lower molecular weight and higher level of plasticizer both increase the rate of weight loss of the hydrogels. The degradation was extremely reduced when the polymers were extruded in the presence of a catalyst. Finally the dynamic mechanical analysis revealed that the degradation of the hydrogels induce a significant reduction in the compressive modulus. This study demonstrates the characteristics and potential of natural polymers as a drug release system.


Subject(s)
Drug Carriers/chemistry , Drug Design , Hydrogels/chemistry , Lignin/chemistry , Polysaccharides/chemistry , Buffers , Hydrogen-Ion Concentration , Starch/chemistry
18.
ChemSusChem ; 10(2): 305-323, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28029233

ABSTRACT

Hemicelluloses, due to their hydrophilic nature, may tend to be overlooked as a component in water-resistant product applications. However, their domains of use can be greatly expanded by chemical derivatization. Research in which hydrophobic derivatives of hemicelluloses or combinations of hemicelluloses with hydrophobic materials are used with to prepare films and composites is considered herein. Isolation methods that have been used to separate hemicellulose from biomass are also reviewed. Finally, the most useful pathways to change the hydrophilic character of hemicelluloses to hydrophobic are reviewed. In this way, the water resistance can be increased and applications of targeted water-resistant hemicellulose developed. Several applications of these materials are discussed.


Subject(s)
Polysaccharides/chemistry , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Polysaccharides/isolation & purification
19.
ChemSusChem ; 9(8): 770-83, 2016 04 21.
Article in English | MEDLINE | ID: mdl-27059111

ABSTRACT

Lignin-based thermoplastic materials have attracted increasing interest as sustainable, cost-effective, and biodegradable alternatives for petroleum-based thermoplastics. As an amorphous thermoplastic material, lignin has a relatively high glass-transition temperature and also undergoes radical-induced self-condensation at high temperatures, which limits its thermal processability. Additionally, lignin-based materials are usually brittle and exhibit poor mechanical properties. To improve the thermoplasticity and mechanical properties of technical lignin, polymers or plasticizers are usually integrated with lignin by blending or chemical modification. This Review attempts to cover the reported approaches towards the development of lignin-based thermoplastic materials on the basis of published information. Approaches reviewed include plasticization, blending with miscible polymers, and chemical modifications by esterification, etherification, polymer grafting, and copolymerization. Those lignin-based thermoplastic materials are expected to show applications as engineering plastics, polymeric foams, thermoplastic elastomers, and carbon-fiber precursors.


Subject(s)
Lignin , Plastics/chemical synthesis , Lignin/biosynthesis , Lignin/chemistry , Lignin/isolation & purification , Molecular Structure
20.
Bioresour Technol ; 199: 59-67, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26338276

ABSTRACT

Mechanical refining is widely used in the pulp and paper industry to enhance the end-use properties of products by creating external fibrillation and internal delamination. This technology can be directly applied to biochemical conversion processes. By implementing mechanical refining technology, biomass recalcitrance to enzyme hydrolysis can be overcome and carbohydrate conversion can be enhanced with commercially attractive levels of enzymes. In addition, chemical and thermal pretreatment severity can be reduced to achieve the same level of carbohydrate conversion, which reduces pretreatment cost and results in lower concentrations of inhibitors. Refining is versatile and a commercially proven technology that can be operated at process flows of ∼ 1500 dry tons per day of biomass. This paper reviews the utilization of mechanical refining in the pulp and paper industry and summarizes the recent development in applications for biochemical conversion, which potentially make an overall biorefinery process more economically viable.


Subject(s)
Biomass , Carbohydrates/chemistry , Carbohydrates/economics , Lignin/chemistry , Mechanical Phenomena , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...