Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Aging Cell ; : e14205, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760909

ABSTRACT

ATP citrate lyase (ACLY) inhibitors have the potential of modulating central processes in protein, carbohydrate, and lipid metabolism, which can have relevant physiological consequences in aging and age-related diseases. Here, we show that hepatic phospho-active ACLY correlates with overweight and Model for End-stage Liver Disease score in humans. Wild-type mice treated chronically with the ACLY inhibitor potassium hydroxycitrate exhibited delayed early mortality. In AML12 hepatocyte cultures, the ACLY inhibitors potassium hydroxycitrate, SB-204990, and bempedoic acid fostered lipid accumulation, which was also observed in the liver of healthy-fed mice treated with potassium hydroxycitrate. Analysis of soleus tissue indicated that potassium hydroxycitrate produced the modulation of wound healing processes. In vivo, potassium hydroxycitrate modulated locomotor function toward increased wire hang performance and reduced rotarod performance in healthy-fed mice, and improved locomotion in mice exposed to cardiotoxin-induced muscle atrophy. Our findings implicate ACLY and ACLY inhibitors in different aspects of aging and muscle regeneration.

2.
Plant Sci ; 341: 111992, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301931

ABSTRACT

Long and very long chain fatty alcohols are produced from their corresponding acyl-CoAs through the activity of fatty acyl reductases (FARs). Fatty alcohols are important components of the cuticle that protects aerial plant organs, and they are metabolic intermediates in the synthesis of the wax esters in the hull of sunflower (Helianthus annuus) seeds. Genes encoding 4 different FARs (named HaFAR2, HaFAR3, HaFAR4 and HaFAR5) were identified using BLAST, and studies showed that four of the genes were expressed in seed hulls. In this study, the structure and location of sunflower FAR proteins were determined. They were also expressed exogenously in Saccharomyces cerevisiae to evaluate their substrate specificity based on the fatty alcohols synthesized by the transformed yeasts. Three of the four enzymes tested showed activity in yeast. HaFAR3 produced C18, C20 and C22 saturated alcohols, whereas HaFAR4 and HaFAR5 produced C24 and C26 saturated alcohols. The involvement of these genes in the synthesis of sunflower seed wax esters was addressed by considering the results obtained.


Subject(s)
Helianthus , Oxidoreductases , Oxidoreductases/metabolism , Helianthus/metabolism , Seeds/metabolism , Fatty Alcohols/metabolism
4.
Adv Food Nutr Res ; 105: 343-398, 2023.
Article in English | MEDLINE | ID: mdl-37516467

ABSTRACT

Long-chain omega-3 polyunsaturated fatty acids such as eicosapentaenoic and docosahexaenoic acids play an important role in brain growth and development, as well as in the health of the body. These fatty acids are traditionally found in seafood, such as fish, fish oils, and algae. They can also be added to food or consumed through dietary supplements. Due to a lack of supply to meet current demand and the potential for adverse effects from excessive consumption of fish and seafood, new alternatives are being sought to achieve the recommended levels in a safe and sustainable manner. New sources have been studied and new production mechanisms have been developed. These new proposals, as well as the importance of these fatty acids, are discussed in this paper.


Subject(s)
Fatty Acids, Omega-3 , Fish Oils , Animals , Docosahexaenoic Acids , Dietary Supplements , Fishes , Fatty Acids
5.
Food Chem ; 409: 135291, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36584530

ABSTRACT

The properties of Triacylglycerols (TAGs) depend on their fatty acid composition and distribution. The presence of saturated fatty acids at the different positions of TAGs is important in determining the melting and tempering profile of many solid and plastic fats. The distribution of fatty acids of a fat can vary depending on its origin and processing. Here we developed a method to determine the composition of positional isomers of disaturated TAGs involved in food formulations using a GC/MS based method that requires no prior purification of the TAG species. The method is based on the different breakages that disaturated TAGs undergo in the MS detector and that permit a rapid determination of the regioisomer distribution of all major TAG species in a crude fat. This approach could facilitate the characterization of a large variety of fats, oils and butter of interest in many food formulations.


Subject(s)
Dietary Fats , Fats , Triglycerides , Fatty Acids , Isomerism
6.
J Plant Physiol ; 274: 153730, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35623270

ABSTRACT

Prosthetic lipoyl groups are essential for the metabolic activity of several multienzyme complexes in most organisms. In plants, octanoyltransferase (LIP2) and lipoyl synthase (LIP1) enzymes in the mitochondria and plastids participate in the de novo synthesis of lipoic acid, and in the attachment of the lipoyl cofactors to their specific targets. In plastids, the lipoylated pyruvate dehydrogenase complex catalyzes the synthesis of the acetyl-CoA that is required for de novo fatty acid synthesis. Since lipoic acid transport across plastid membranes has not been demonstrated, these organelles require specific plastidial LIP1 and LIP2 activities for the in situ synthesis of this cofactor. Previously, one essential LIP1 enzyme and two redundant LIP2 enzymes have been identified within Arabidopsis chloroplasts. In this study, two plastidial sunflower (Helianthus annuus L.) LIP2 genes (HaLIP2p1 and HaLIP2p2) were identified, cloned and characterized. The expression of these genes in different tissues was studied and the tertiary structure of the peptides they encode was modeled by protein docking. These genes were overexpressed in Escherichia coli and their impact on bacterial fatty acid synthesis was studied. Finally, transgenic Arabidopsis plants overexpressing HaLIP2p1 were generated and their seed lipid profiles analyzed. The lipid composition of the transgenic seeds, particularly their TAG species, differed from that of wild-type plants, revealing a relationship between lipoic acid synthesis and the accumulation of storage lipids in Arabidopsis seeds.


Subject(s)
Arabidopsis , Helianthus , Thioctic Acid , Arabidopsis/genetics , Arabidopsis/metabolism , Helianthus/metabolism , Plants, Genetically Modified , Plastids , Seeds/metabolism
7.
Plants (Basel) ; 11(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35406952

ABSTRACT

Sunflower is an important oilseed crop in which the biochemical pathways leading to seed oil synthesis and accumulation have been widely studied. However, how these pathways are regulated is less well understood. The WRINKLED1 (WRI1) transcription factor is considered a key regulator in the control of triacylglycerol biosynthesis, acting through the AW box binding element (CNTNG(N)7CG). Here, we identified the sunflower WRI1 gene and characterized its activity in electrophoretic mobility shift assays. We studied its role as a co-regulator of sunflower genes involved in plastidial fatty acid synthesis. Sunflower WRI1-targets included genes encoding the pyruvate dehydrogenase complex, the α-CT and BCCP genes, genes encoding ACPs and the fatty acid synthase complex, together with the FATA1 gene. As such, sunflower WRI1 regulates genes involved in seed plastidial fatty acid biosynthesis in a coordinated manner, establishing a WRI1 push and pull strategy that drives oleic acid synthesis for its export into the cytosol. We also determined the base bias at the N positions in the active sunflower AW box motif. The sunflower AW box is sequence-sensitive at the non-conserved positions, enabling WRI1-binding. Moreover, sunflower WRI1 could bind to a non-canonical AW-box motif, opening the possibility of searching for new target genes.

8.
Plant Physiol Biochem ; 170: 266-274, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34929430

ABSTRACT

Castor beans accumulate large amounts of triacylglycerols (TAGs) in the seed endosperm. This oil contains hydroxylated ricinoleic levels close to 90%, which is unique among oil seeds. The capacity to accumulate such high levels of such an unusual fatty acids is due to its specific accumulation and channeling. Here, the ability of the castor biosynthetic machinery to accumulate unusual fatty acids in the form of TAGs was investigated, focusing on ricinoleic acid and the structurally analogous lesquerolic and coriolic fatty acids. The metabolism of different radioactive precursors in active membrane fractions from castor bean's were studied, and the rates and accumulation of these fatty acids provided evidence of the different mechanisms involved in the accumulation of hydroxylated fatty acids in this species. In particular, these studies highlighted the potential of castor to accumulate unusual fatty acids other than ricinoleic acid, showing that castor endosperm can efficiently accumulate lesquerolic acid.


Subject(s)
Ixodes , Ricinus communis , Animals , Fatty Acids , Microsomes , Ricinus , Seeds
9.
Front Plant Sci ; 12: 781917, 2021.
Article in English | MEDLINE | ID: mdl-34868183

ABSTRACT

Lipoic acid (LA, 6,8-dithiooctanoic acid) is a sulfur containing coenzyme essential for the activity of several key enzymes involved in oxidative and single carbon metabolism in most bacteria and eukaryotes. LA is synthetized by the concerted activity of the octanoyltransferase (LIP2, EC 2.3.1.181) and lipoyl synthase (LIP1, EC 2.8.1.8) enzymes. In plants, pyruvate dehydrogenase (PDH), 2-oxoglutarate dehydrogenase or glycine decarboxylase are essential complexes that need to be lipoylated. These lipoylated enzymes and complexes are located in the mitochondria, while PDH is also present in plastids where it provides acetyl-CoA for de novo fatty acid biosynthesis. As such, lipoylation of PDH could regulate fatty acid synthesis in both these organelles. In the present work, the sunflower LIP1 and LIP2 genes (HaLIP1m and HaLIP2m) were isolated sequenced, cloned, and characterized, evaluating their putative mitochondrial location. The expression of these genes was studied in different tissues and protein docking was modeled. The genes were also expressed in Escherichia coli and Arabidopsis thaliana, where their impact on fatty acid and glycerolipid composition was assessed. Lipidomic studies in Arabidopsis revealed lipid remodeling in lines overexpressing these enzymes and the involvement of both sunflower proteins in the phenotypes observed is discussed in the light of the results obtained.

10.
Front Physiol ; 12: 696275, 2021.
Article in English | MEDLINE | ID: mdl-34276415

ABSTRACT

Metabolic disorders are frequently associated with physiological changes that occur during ageing. The mitochondrial prohibitin complex (PHB) is an evolutionary conserved context-dependent modulator of longevity, which has been linked to alterations in lipid metabolism but which biochemical function remains elusive. In this work we aimed at elucidating the molecular mechanism by which depletion of mitochondrial PHB shortens the lifespan of wild type animals while it extends that of insulin signaling receptor (daf-2) mutants. A liquid chromatography coupled with mass spectrometry approach was used to characterize the worm lipidome of wild type and insulin deficient animals upon PHB depletion. Toward a mechanistic interpretation of the insights coming from this analysis, we used a combination of biochemical, microscopic, and lifespan analyses. We show that PHB depletion perturbed glycerophospholipids and glycerolipids pools differently in short- versus long-lived animals. Interestingly, PHB depletion in otherwise wild type animals induced the endoplasmic reticulum (ER) unfolded protein response (UPR), which was mitigated in daf-2 mutants. Moreover, depletion of DNJ-21, which functionally interacts with PHB in mitochondria, mimicked the effect of PHB deficiency on the UPRER and on the lifespan of wild type and insulin signaling deficient mutants. Our work shows that PHB differentially modulates lipid metabolism depending on the worm's metabolic status and provides evidences for a new link between PHB and ER homeostasis in ageing regulation.

11.
Plant Physiol Biochem ; 166: 689-699, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34214779

ABSTRACT

Fatty acids play many roles in plants, but the function of some key genes involved in fatty acid biosynthesis in plant development are not yet properly understood. Here, we clone two ß-ketoacyl-[ACP] reductase (KAR) genes from sunflower, HaKAR1 and HaKAR2, and characterize their functional roles. The enzymes cloned were the only two copies present in the sunflower genome. Both displayed a high degree of similarity, but their promoters infer different regulation. The two sunflower KAR genes were constitutively expressed in all tissues examined, being maximum in developing cotyledons at the start of oil synthesis. Over-expression of HaKAR1 in E. coli changed the fatty acid composition by promoting the elongation of C16:0 to C18:0 fatty acids. The enzymatic characterization of HaKAR1 revealed similar kinetic parameters to homologues from other oil accumulating species. The results point to a partially functional redundancy between HaKAR1 and HaKAR2. This study clearly revealed that these genes play a prominent role in de novo fatty acids synthesis in sunflower seeds.


Subject(s)
Helianthus , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase , Acyl Carrier Protein , Amino Acid Sequence , Escherichia coli/metabolism , Fatty Acid Synthases/metabolism , Fatty Acids , Helianthus/genetics , Helianthus/metabolism , Seeds/genetics , Seeds/metabolism
12.
Plants (Basel) ; 10(4)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917507

ABSTRACT

Histone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds. Two master transcriptional regulators identified in this analysis, VIV1 (homologous to Arabidopsis ABI3) and FUS3, cooperate in the regulation of WRINKLED 1, a transcriptional factor regulating glycolysis, and fatty acid synthesis in developing oilseeds.

13.
Nat Commun ; 12(1): 49, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397961

ABSTRACT

Aging and fertility are two interconnected processes. From invertebrates to mammals, absence of the germline increases longevity. Here we show that loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase (STS), raises the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. This increased longevity requires factors involved in germline-mediated longevity (daf-16, daf-12, kri-1, tcer-1 and daf-36 genes) although sul-2 mutations do not affect fertility. Interestingly, sul-2 is only expressed in sensory neurons, suggesting a regulation of sulfated hormones state by environmental cues. Treatment with the specific STS inhibitor STX64, as well as with testosterone-derived sulfated hormones reproduces the longevity phenotype of sul-2 mutants. Remarkably, those treatments ameliorate protein aggregation diseases in C. elegans, and STX64 also Alzheimer's disease in a mammalian model. These results open the possibility of reallocating steroid sulfatase inhibitors or derivates for the treatment of aging and aging related diseases.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/physiology , Longevity , Steryl-Sulfatase/metabolism , Sulfatases/metabolism , Animals , Disease Models, Animal , Epistasis, Genetic , Gonads/metabolism , Mice , Phenotype , Sensory Receptor Cells/metabolism , Steroids/metabolism
14.
Plant Sci ; 300: 110630, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33180709

ABSTRACT

Acyl-CoA-binding proteins (ACBP) bind to long-chain acyl-CoA esters and phospholipids, enhancing the activity of different acyltransferases in animals and plants. Nevertheless, the role of these proteins in the synthesis of triacylglycerols (TAGs) remains unclear. Here, we cloned a cDNA encoding HaACBP1, a Class II ACBP from sunflower (Helianthus annuus), one of the world's most important oilseed crop plants. Transcriptome analysis of this gene revealed strong expression in developing seeds from 16 to 30 days after flowering. The recombinant protein (rHaACBP1) was expressed in Escherichia coli and purified to be studied by in vitro isothermal titration calorimetry and for phospholipid binding. Its high affinity for saturated palmitoyl-CoA (16:0-CoA; KD 0.11 µM) and stearoyl-CoA (18:0-CoA; KD 0.13 µM) esters suggests that rHaACBP1 could act in acyl-CoA transfer pathways that involve saturated acyl derivatives. Furthermore, rHaACBP1 also binds to both oleoyl-CoA (18:1-CoA; KD 6.4 µM) and linoleoyl-CoA (18:2-CoA; KD 21.4 µM) esters, the main acyl-CoA substrates used to synthesise the TAGs that accumulate in sunflower seeds. Interestingly, rHaACBP1 also appears to bind to different species of phosphatidylcholines (dioleoyl-PC and dilinoleoyl-PC), glycerolipids that are also involved in TAG synthesis, and while it interacts with dioleoyl-PA, this is less prominent than its binding to the PC derivative. Expression of rHaACBP in yeast alters its fatty acid composition, as well as the composition and size of the host acyl-CoA pool. These results suggest that HaACBP1 may potentially fulfil a role in the transport and trafficking of acyl-CoAs during sunflower seed development.


Subject(s)
Acyl Coenzyme A/metabolism , Acyltransferases/metabolism , Carrier Proteins/metabolism , Helianthus/genetics , Helianthus/metabolism , Plant Proteins/metabolism , Triglycerides/biosynthesis , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genes, Plant
15.
Front Plant Sci ; 11: 403, 2020.
Article in English | MEDLINE | ID: mdl-32351524

ABSTRACT

Lysophosphatidylcholine acyltransferase (LPCAT, EC 2.3.1.23) is an evolutionarily conserved key enzyme in the Lands cycle that catalyzes acylation of lysophosphatidylcholine (LPC) to produce phosphatidylcholine (PC), the main phospholipid in cellular membranes. In this study, three LPCAT genes from sunflower were identified and the corresponding proteins characterized. These HaLPCAT genes encoded functionally active enzymes that were able to complement a deficient yeast mutant. Moreover, enzymatic assays were carried out using microsomal preparations of the yeast cells. When acyl specificities were measured in the forward reaction, these enzymes exhibited a substrate preference for unsaturated acyl-CoAs, especially for linolenoyl-CoA, while in the reverse reaction, linoleoyl or linolenoyl acyl groups were transferred from PC to acyl-CoA to a similar extent. Expression levels of LPCAT genes were studied revealing distinct tissue-specific expression patterns. In summary, this study suggests that the combined forward and reverse reactions catalyzed by sunflower LPCATs facilitate acyl-exchange between the sn-2 position of PC and the acyl-CoA pool. Sunflower LPCATs displayed different characteristics, which could point to different functionalities, favoring the enrichment of seed triacylglycerols (TAGs) with polyunsaturated fatty acid (PUFA).

16.
J Microbiol Methods ; 164: 105686, 2019 09.
Article in English | MEDLINE | ID: mdl-31400361

ABSTRACT

Glycogen is a highly soluble branched polymer composed of glucose monomers linked by glycosidic bonds that represents, together with starch, one of the main energy storage compounds in living organisms. While starch is present in plant cells, glycogen is present in bacteria, protozoa, fungi and animal cells. Due to its essential function, it has been the subject of intense research for almost two centuries. Different procedures for the isolation and quantification of glycogen, according to the origin of the sample and/or the purpose of the study, have been reported in the literature. The objective of this study is to optimize the methodology for the determination of glycogen in cyanobacteria, as the interest in cyanobacterial glycogen has increased in recent years due to the biotechnological application of these microorganisms. In the present work, the methodology reported for the quantification of glycogen in cyanobacteria has been reviewed and an extensive empirical analysis has been performed showing how this methodology can be optimized significantly to reduce time and improve reliability and reproducibility. Based on these results, a simple and fast protocol for quantification of glycogen in the model unicellular cyanobacterium Synechocystis sp. PCC 6803 is presented, which could also be successfully adapted to other cyanobacteria.


Subject(s)
Bacteriological Techniques/methods , Glycogen/isolation & purification , Synechocystis/chemistry , Bacterial Proteins/isolation & purification , Cyanobacteria/chemistry , Enzyme Assays , Glucose , Glycogen/chemistry , Glycogen/metabolism , Hydrolysis , Reproducibility of Results , Starch/chemistry
17.
Planta ; 249(6): 1823-1836, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30847571

ABSTRACT

MAIN CONCLUSION: The enzymes HaKCS1 and HaKCS2 are expressed in sunflower seeds and contribute to elongation of C18 fatty acids, resulting in the C20-C24 fatty acids in sunflower oil. Most plant fatty acids are produced by plastidial soluble fatty acid synthases that produce fatty acids of up to 18 carbon atoms. However, further acyl chain elongations can take place in the endoplasmic reticulum, catalysed by membrane-bound synthases that act on acyl-CoAs. The condensing enzymes of these complexes are the ketoacyl-CoA synthase (KCSs), responsible for the synthesis of very long chain fatty acids (VLCFAs) and their derivatives in plants, these including waxes and cuticle hydrocarbons, as well as fatty aldehydes. Sunflower seeds accumulate oil that contains around 2-3% of VLCFAs and studies of the fatty acid elongase activity in developing sunflower embryos indicate that two different KCS isoforms drive the synthesis of these fatty acids. Here, two cDNAs encoding distinct KCSs were amplified from RNAs extracted from developing sunflower embryos and named HaKCS1 and HaKCS2. These genes are expressed in developing seeds during the period of oil accumulation and they are clear candidates to condition sunflower oil synthesis. These two KCS cDNAs complement a yeast elongase null mutant and when expressed in yeast, they alter the host's fatty acid profile, proving the encoded KCSs are functional. The structure of these enzymes was modelled and their contribution to the presence of VLCFAs in sunflower oil is discussed based on the results obtained.


Subject(s)
Acetyltransferases/metabolism , Helianthus/enzymology , Models, Structural , Sunflower Oil/metabolism , Acetyltransferases/chemistry , Acetyltransferases/genetics , Acyl Coenzyme A/metabolism , Aldehydes/metabolism , Amino Acid Sequence , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA, Complementary/genetics , Fatty Acid Synthases/chemistry , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Fatty Acids/metabolism , Helianthus/genetics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Seeds/enzymology , Seeds/genetics , Sequence Alignment
18.
Front Plant Sci ; 9: 1496, 2018.
Article in English | MEDLINE | ID: mdl-30459777

ABSTRACT

Sunflower seeds (Helianthus annuus L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal acyl-acyl carrier protein (acyl-ACP) thioesterase activity in vitro, the enzymes that terminate the process of de novo fatty acid synthesis by catalyzing the hydrolysis of the acyl-ACPs synthesized by fatty acid synthase. Fatty acid thioesterases can be classified into two families with distinct substrate specificities, namely FatA and FatB. Here, some new aspects of these enzymes have been studied, assessing how both enzymes contribute to the acyl composition of sunflower oil, not least through the changes in their expression during the process of seed filling. Moreover, the binding pockets of these enzymes were modeled based on new data from plant thioesterases, revealing important differences in their volume and geometry. Finally, the subcellular location of the two enzymes was evaluated and while both possess an N-terminal plastid transit peptide, only in FatB contains a hydrophobic sequence that could potentially serve as a transmembrane domain. Indeed, using in vivo imaging and organelle fractionation, H. annuus thioesterases, HaFatA and HaFatB, appear to be differentially localized in the plastid stroma and membrane envelope, respectively. The divergent roles fulfilled by HaFatA and HaFatB in oil biosynthesis are discussed in the light of our data.

19.
Plant Sci ; 252: 42-52, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27717477

ABSTRACT

In oil crops, triacylglycerol biosynthesis is an important metabolic pathway in which glycerol-3-phosphate acyltransferase (GPAT) performs the first acylation step. Mass spectrometry analysis of developing sunflower (Helianthus annuus) seed membrane fractions identified an abundant GPAT, HaGPAT9 isoform 1, with a N-terminal peptide that possessed two phosphorylated residues with possible regulatory function. HaGPAT9-1 belongs to a broad eukaryotic GPAT family, similar to mammalian GPAT3, and it represents one of the two sunflower GPAT9 isoforms, sharing 90% identity with HaGPAT9-2. Both sunflower genes are expressed during seed development and in vegetative tissues, with HaGPAT9-1 transcripts accumulating at relatively higher levels than those for HaGPAT9-2. Green fluorescent protein tagging of HaGPAT9-1 confirmed its subcellular accumulation in the endoplasmic reticulum. Despite their overall sequence similarities, the two sunflower isoforms displayed significant differences in their enzymatic activities. For instance, HaGPAT9-1 possesses in vivo GPAT activity that rescues the lethal phenotype of the cmy228 yeast strain, while in vitro assays revealed a preference of HaGPAT9-1 for palmitoyl-, oleoyl- and linoleoyl-CoAs of one order of magnitude, with the highest increase in yield for oleoyl- and linoleoyl-CoAs. By contrast, no enzymatic activity could be detected for HaGPAT9-2, even though its over-expression modified the TAG profile of yeast.


Subject(s)
Glycerol-3-Phosphate O-Acyltransferase/physiology , Helianthus/enzymology , Plant Proteins/physiology , Cloning, Molecular , Endoplasmic Reticulum/metabolism , Glycerol-3-Phosphate O-Acyltransferase/analysis , Glycerol-3-Phosphate O-Acyltransferase/metabolism , Helianthus/genetics , Helianthus/growth & development , Mass Spectrometry , Phylogeny , Plant Proteins/analysis , Plant Proteins/metabolism , RNA, Messenger/metabolism , Seeds/enzymology , Seeds/genetics , Seeds/growth & development
20.
Planta ; 244(1): 245-58, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27056057

ABSTRACT

MAIN CONCLUSION: The natural OLE-1 high-oleic castor mutant has been characterized, demonstrating that point mutations in the FAH12 gene are responsible for the high-oleic phenotype. The contribution of each mutation was evaluated by heterologous expression in yeast, and lipid studies in developing OLE-1 seeds provided new evidence of unusual fatty acids channeling into TAGs. Ricinus communis L. is a plant of the Euphorbiaceae family well known for producing seeds whose oil has a very high ricinoleic (12-hydroxyoctadecenoic) acid content. Castor oil is considered the only commercially renewable source of hydroxylated fatty acids, which have many applications as chemical reactants. Accordingly, there has been great interest in the field of plant lipid biotechnology to define how ricinoleic acid is synthesized, which could also provide information that might serve to increase the content of other unusual fatty acids in oil crops. Accordingly, we set out to study the biochemistry of castor oil synthesis by characterizing a natural castor bean mutant deficient in ricinoleic acid synthesis (OLE-1). This mutant accumulates high levels of oleic acid and displays remarkable alterations in its seed lipid composition. To identify enzymes that are critical for this phenotype in castor oil, we cloned and sequenced the oleate desaturase (FAD2) and hydroxylase (FAH12) genes from wild-type and OLE-1 castor bean plants and analyzed their expression in different tissues. Heterologous expression in yeast confirmed that three modifications to the OLE-1 FAH12 protein were responsible for its weaker hydroxylase activity. In addition, we studied the expression of the genes involved in this biosynthetic pathway at different developmental stages, as well as that of other genes involved in lipid biosynthesis, both in wild-type and mutant seeds.


Subject(s)
Mutation , Ricinoleic Acids/metabolism , Ricinus communis/genetics , Ricinus communis/metabolism , Amino Acid Sequence , Biosynthetic Pathways/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acids/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Lipids/analysis , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Models, Genetic , Oleic Acid/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...