Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 9: 791119, 2021.
Article in English | MEDLINE | ID: mdl-34950646

ABSTRACT

The use of autologous tissue grafts for tunica albuginea repair in Peyronie's disease and congenital chordee is often restricted by limited tissue availability and donor site morbidity, therefore new biomaterial options are needed. In this study, bi-layer silk fibroin (BLSF) scaffolds were investigated to support functional tissue regeneration of tunica albuginea in a rabbit corporoplasty model. Eighteen adult male, New Zealand white rabbits were randomized to nonsurgical controls (NSC, N = 3), or subjected to corporoplasty with BLSF grafts (N = 5); decellularized small intestinal submucosa (SIS) matrices (N = 5); or autologous tunica vaginalis (TV) flaps (N = 5). End-point evaluations were cavernosography, cavernosometry, histological, immunohistochemical, and histomorphometric assessments. Maximum intracorporal pressures (ICP) following papaverine-induced erection were similar between all groups. Eighty percent of rabbits repaired with BLSF scaffolds or TV flaps achieved full rigid erections, compared to 40% of SIS reconstructed animals. Five-minute peak erections were maintained in 60% of BLSF rabbits, compared to 20% of SIS and TV flap reconstructed rabbits. Graft perforation occurred in 60% of TV group at maximum ICP compared to 20% of BLSF cohort. Neotissues supported by SIS and BLSF scaffolds were composed of collagen type I and elastin fibers similar to NSC. SIS and TV flaps showed significantly elevated levels of corporal fibrosis relative to NSC with a corresponding decrease in corporal smooth muscle cells expressing contractile proteins. BLSF biomaterials represent emerging platforms for corporoplasty and produce superior functional and histological outcomes in comparison to TV flaps and SIS matrices for tunica albuginea repair.

2.
Front Bioeng Biotechnol ; 9: 723559, 2021.
Article in English | MEDLINE | ID: mdl-34604185

ABSTRACT

Ureteral reconstruction with autologous tissue grafts is often limited by tissue availability and donor site morbidity. This study investigates the performance of acellular, bi-layer silk fibroin (BLSF) scaffolds in a porcine model of ureteroplasty. Tubular ureteroplasty with BLSF grafts in combination with transient stenting for 8 weeks was performed in adult female, Yucatan, mini-swine (N = 5). Animals were maintained for 12 weeks post-op with imaging of neoconduits using ultrasonography and retrograde ureteropyelography carried out at 2 and 4 weeks intervals. End-point analyses of ureteral neotissues and unoperated controls included histological, immunohistochemical (IHC), histomorphometric evaluations as well as ex vivo functional assessments of contraction/relaxation. All animals survived until scheduled euthanasia and displayed mild hydronephrosis (Grades 1-2) in reconstructed collecting systems during the 8 weeks stenting period with one animal presenting with a persistent subcutaneous fistula at 2 weeks post-op. By 12 weeks of scaffold implantation, unstented neoconduits led to severe hydronephrosis (Grade 4) and stricture formation in the interior of graft sites in 80% of swine. Bulk scaffold extrusion into the distal ureter was also apparent in 60% of swine contributing to ureteral obstruction. However, histological and IHC analyses revealed the formation of innervated, vascularized neotissues with a-smooth muscle actin+ and SM22α+ smooth muscle bundles as well as uroplakin 3A+ and pan-cytokeratin + urothelium. Ex vivo contractility and relaxation responses of neotissues were similar to unoperated control segments. BLSF biomaterials represent emerging platforms for tubular ureteroplasty, however further optimization is needed to improve in vivo degradation kinetics and mitigate stricture formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...