Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 21(2): 224-241, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30452047

ABSTRACT

Accurate and precise analyses of oil and gas (O&G) wastewaters and solids (e.g., sediments and sludge) are important for the regulatory monitoring of O&G development and tracing potential O&G contamination in the environment. In this study, 15 laboratories participated in an inter-laboratory comparison on the chemical characterization of three O&G wastewaters from the Appalachian Basin and four solids impacted by O&G development, with the goal of evaluating the quality of data and the accuracy of measurements for various analytes of concern. Using a variety of different methods, analytes in the wastewaters with high concentrations (i.e., >5 mg L-1) were easily detectable with relatively high accuracy, often within ±10% of the most probable value (MPV). In contrast, often less than 7 of the 15 labs were able to report detectable trace metal(loid) concentrations (i.e., Cr, Ni, Cu, Zn, As, and Pb) with accuracies of approximately ±40%. Despite most labs using inductively coupled plasma mass spectrometry (ICP-MS) with low instrument detection capabilities for trace metal analyses, large dilution factors during sample preparation and low trace metal concentrations in the wastewaters limited the number of quantifiable determinations and likely influenced analytical accuracy. In contrast, all the labs measuring Ra in the wastewaters were able to report detectable concentrations using a variety of methods including gamma spectroscopy and wet chemical approaches following Environmental Protection Agency (EPA) standard methods. However, the reported radium activities were often greater than ±30% different to the MPV possibly due to calibration inconsistencies among labs, radon leakage, or failing to correct for self-attenuation. Reported radium activities in solid materials had less variability (±20% from MPV) but accuracy could likely be improved by using certified radium standards and accounting for self-attenuation that results from matrix interferences or a density difference between the calibration standard and the unknown sample. This inter-laboratory comparison illustrates that numerous methods can be used to measure major cation, minor cation, and anion concentrations in O&G wastewaters with relatively high accuracy while trace metal(loid) and radioactivity analyses in liquids may often be over ±20% different from the MPV.


Subject(s)
Inorganic Chemicals/analysis , Laboratories/organization & administration , Petroleum/analysis , Radioactive Pollutants/analysis , Wastewater/chemistry , Appalachian Region
2.
Sci Total Environ ; 511: 544-52, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25585157

ABSTRACT

Arsenic (As) contamination of groundwater drinking sources was investigated in the Mekong Delta, Vietnam in order to assess the occurrence of As in the groundwater, and the magnitude of As exposure of local residents through measurements of As in toenails of residents consuming groundwater as their major drinking water source. Groundwater (n=68) and toenail (n=62) samples were collected in Dong Thap Province, adjacent to the Mekong River, in southern Vietnam. Fifty-three percent (n=36) of the wells tested had As content above the World Health Organization's (WHO) recommended limit of 10 ppb. Samples were divided into Northern (mean As=4.0 ppb) and Southern (329.0 ppb) groups; wells from the Southern group were located closer to the Mekong River. Elevated As contents were associated with depth (<200 m), salinity (low salinity), and redox state (reducing conditions) of the study groundwater. In 79% of the wells, As was primarily composed of the reduced As(III) species. Arsenic content in nails collected from local residents was significantly correlated to As in drinking water (r=0.49, p<0.001), and the relationship improved for pairs in which As in drinking water was higher than 1 ppb (r=0.56, p<0.001). Survey data show that the ratio of As in nail to As in water varied among residents, reflecting differential As bioaccumulation in specific exposed sub-populations. The data show that water filtration and diet, particularly increased consumption of animal protein and dairy, and reduced consumption of seafood, were associated with lower ratios of As in nail to As in water and thus could play important roles in mitigating As exposure in areas where As-rich groundwater is the primary drinking water source.


Subject(s)
Drinking Water/chemistry , Environmental Exposure/statistics & numerical data , Water Pollutants, Chemical/analysis , Water Supply/statistics & numerical data , Arsenic/analysis , Humans , Nails/chemistry , Vietnam , Water Wells/chemistry
3.
Environ Sci Technol ; 48(21): 12552-60, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25327769

ABSTRACT

Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25-31‰) and δ7Li (6-10‰) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (∼0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF.


Subject(s)
Fresh Water/chemistry , Oil and Gas Fields , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Industrial Waste , Pennsylvania , West Virginia
4.
Ground Water ; 43(5): 653-60, 2005.
Article in English | MEDLINE | ID: mdl-16149960

ABSTRACT

Israel and the Palestinian Authority share the southern Mediterranean coastal aquifer. Long-term overexploitation in the Gaza Strip has resulted in a decreasing water table, accompanied by the degradation of its water quality. Due to high levels of salinity and nitrate and boron pollution, most of the ground water is inadequate for both domestic and agricultural consumption. The rapid rate of population growth in the Gaza Strip and dependence upon ground water as a single water source present a serious challenge for future political stability and economic development. Here, we integrate the results of geochemical studies and numerical modeling to postulate different management scenarios for joint management between Israel and the Palestinian Authority. The chemical and isotopic data show that most of the salinity phenomena in the Gaza Strip are derived from the natural flow of saline ground water from Israel toward the Gaza Strip. As a result, the southern coastal aquifer does not resemble a classic "upstream-downstream" dispute because Israel's pumping of the saline ground water reduces the salinization rates of ground water in the Gaza Strip. Simulation of different pumping scenarios using a monolayer, hydrodynamic, two-dimensional model (MARTHE) confirms the hypothesis that increasing pumping along the Gaza Strip border combined with a moderate reduction of pumping within the Gaza Strip would improve ground water quality within the Gaza Strip. We find that pumping the saline ground water for a source of reverse-osmosis desalination and then supplying the desalinated water to the Gaza Strip should be an essential component of a future joint management strategy between Israel and the Palestinian Authority.


Subject(s)
Conservation of Natural Resources , Sodium Chloride , Water Pollution/prevention & control , Water Supply , Fresh Water , International Cooperation , Israel , Middle East , Models, Theoretical , Seawater
5.
Ground Water ; 39(2): 240-8, 2001.
Article in English | MEDLINE | ID: mdl-11286071

ABSTRACT

One of the major problems in the lower Jordan Valley is the increasing salinization (i.e., chloride content) of local ground water. The high levels of salinity limit the utilization of ground water for both domestic and agriculture applications. This joint collaborative study evaluates the sources and mechanisms for salinization in the Jericho area. We employ diagnostic geochemical fingerprinting methods to trace the potential sources of the salinity in (1) the deep confined subaquifer system (K2) of Lower Cenomanian age; (2) the upper subaquifer system (K1) of Upper Cenomanian and Turonian ages; and (3) the shallow aquifer system (Q) of Plio-Pleistocene ages. The chemical composition of the saline ground water from the two Cenomanian subaquifers (K1 and K2) point to a single saline source with Na/Cl approximately 0.5 and Br/Cl approximately 7 x 10(-3). This composition is similar to that of thermal hypersaline spring that are found along the western shore of the Dead Sea (e.g., En Gedi thermal spring). We suggest that the increasing salinity in both K1 and K2 subaquifers is derived from mixing with deep-seated brines that flow through the Rift fault system. The salinization rate depends on the discharge volume of the fresh meteoric water in the Cenomanian Aquifer. In contrast, the chemical composition of ground water from the Plio-Pleistocene Aquifer shows a wide range of Cl- (100-2000 mg/L), Na/Cl (0.4-1.0), Br/Cl (2-6 x 10(-3)), and SO4/Cl (0.01-0.4) ratios. These variations, together with the high SO4(2-), K+, and NO3- concentrations, suggest that the salinity in the shallow aquifer is derived from the combination of (1) upconing of deep brines as reflected by low Na/Cl and high Br/Cl ratios; (2) leaching of salts from the Lisan Formation within the Plio-Pleistocene Aquifer, as suggested by the high SO4(2-) concentrations; and (3) anthropogenic contamination of agriculture return flow and sewage effluents with distinctive high K+ (80 mg/L) and NO3- (80 mg/l) contents and low Br/Cl ratios (2 x 10(-3)). Our data demonstrates that the chemical composition of salinized ground water can be used to delineate the sources of salinity and hence to establish the conceptual model for explaining salinization processes.


Subject(s)
Fresh Water/analysis , Salts/analysis , Bicarbonates/analysis , Bromides/analysis , Chlorides/analysis , Geological Phenomena , Geology , Israel , Nitrates/analysis , Potassium/analysis , Sodium/analysis , Sulfates/analysis , Water Supply
6.
Biol Trace Elem Res ; 66(1-3): 145-51, 1998.
Article in English | MEDLINE | ID: mdl-10050916

ABSTRACT

The present study investigates the isotopic composition of anthropogenic boron (B) and its potential affects on the environment. The isotopic ratios of B in synthetic products from the main ores in the world have been measured by negative thermal ionization mass spectrometry. The data show that the isotopic compositions of Na-borate products and washing powders overlap with those of natural Na-borate minerals. In contrast, the 11B/10B ratios of synthetic Ca-borate and Na/Ca borate products are significantly lower (by 15 permil) and overlap with those of the natural Ca-borate minerals. Consequently, the original isotopic signature of natural borate minerals is not modified during the manufacturing process of synthetic products. The B isotopic composition of domestic wastewater from Israel and Riverside, California suggests that B in sewage is derived from Na-borate components used in detergents. Since B, like other inorganic ions, is not removed during conventional sewage treatment, it accumulates in domestic wastewater. Although the B concentration in pristine groundwaters is generally low (<0.05 mg/L), contaminant sources (e.g., wastewater) are relatively enriched in B (0.5-1 mg/L). The isotopically distinguished signature of borate compounds is used to trace groundwater contamination.


Subject(s)
Biological Evolution , Boron/chemistry , Environmental Pollution , Boron/adverse effects , Geological Phenomena , Geology , Isotopes , Mass Spectrometry , Water Pollution, Chemical
7.
Anal Bioanal Chem ; 354(7-8): 903-9, 1996 Mar.
Article in English | MEDLINE | ID: mdl-15048414

ABSTRACT

A technique for precise boron isotope ratio measurements with a high detection power has been developed by negative thermal ionization mass spectrometry (NTIMS). Relative standard deviations in the range of 0.03-0.3% have been obtained for the determination of the (11)B/(10)B isotope ratio using nanogram amounts of boron. Ba(OH)(2) has been applied as ionization promoter for the formation of negative thermal ions. By adding MgCl(2) better reproducibilities of the measurement have been achieved. A possible interference of BO(-)(2) ions at mass number 42 by CNO(-) could be excluded by the sample preparation technique used. Contrary to other NTI techniques no dependence of the measured isotope ratio on the boron amount used has been observed. Anthropogenic and natural saline influences in ground water have been successfully identified by boron isotope ratio determinations with this NTIMS method, due to the different isotopic composition of boron in natural and anthropogenic substances. In sewage, the boron isotope ratio is substantially influenced by washing powder, which contains low (11)B/(10)B ratios (expressed in delta(11)B values normalized to the standard reference material NIST SRM 951). In contaminated ground water, low delta(11)B values are normally correlated with high boron and high chloride concentrations. On the other hand, delta(11)B shifts to higher values in less contaminated samples. For ground water with saline influences, only the delta(11)B determination, and not the boron or chloride content, allowed the correct identification of this natural source of contamination.

SELECTION OF CITATIONS
SEARCH DETAIL
...