Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36431680

ABSTRACT

Two-dimensional holographic structures based on photopolymer compositions with luminescent nanoparticles, such as quantum dots, are promising candidates for multiresponsive luminescence sensors. However, their applicability may suffer from the incompatibility of the components, and hence aggregation of the nanoparticles. We showed that the replacement of an organic shell at the CdSe/ZnS quantum dots' surface with monomer molecules of the photopolymerizable medium achieved full compatibility with the surrounding medium. The effect was demonstrated by luminescence spectroscopy, and steady-state and time-resolved luminescent laser scanning microscopy. We observed the complete spectral independence of local photoluminescence decay, thus proving the absence of even nanoscale aggregation, either in the liquid composition or in the nodes and antinodes of the grating. Therefore, nanostructured luminescent photopolymer gratings with monomer-covered quantum dots can act as hybrid diffractive-luminescent sensor elements.

2.
Opt Lett ; 46(1): 122-125, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33362031

ABSTRACT

We report on the first, to the best of our knowledge, in-band pumped Tm3+,Ho3+ codoped waveguide (WG) laser. A depressed-index surface channel WG (type III) with a 50 µm half-ring cladding is fabricated in a 5 at. % Tm3+, 0.5 at. % Ho3+:KLu(WO4)2 crystal by femtosecond pulse direct laser writing. Under in-band pumping by a 1679 nm Er Raman fiber laser, Tm3+ and Ho3+ colasing is observed in the WG and explained by bidirectional energy transfer. The maximum total output power at ∼1942nm(Tm3+) and 2059 nm (Ho3+) is 448 mW with a slope efficiencyM of 40.6%, which is a record high for this type of WG lasers. The maximum output power of the Ho laser reaches 144 mW.

3.
Opt Lett ; 45(14): 4060-4063, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32667354

ABSTRACT

Surface channel waveguides (WGs) based on a half-ring (40-60-µm-diameter) depressed-index cladding (type III) geometry are fabricated in monoclinic Tm3+:MgWO4 by femtosecond (fs) laser writing at a repetition rate of 1 kHz. The WGs are characterized by confocal laser microscopy and µ-Raman spectroscopy. A Tm3+:MgWO4 WG laser generates 320 mW at ∼2.02µm with a slope efficiency of 64.4%. The WG emits a transverse single-mode and linear polarization (E||Nm). A remarkable low loss of <0.1dB/cm is measured for the WG. Vibronic laser emission at ∼2.08µm is also achieved.

4.
Nanomaterials (Basel) ; 10(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283817

ABSTRACT

Photoelectrical and photoluminescent properties of multilayer graphene (MLG)-quantum dots (QD) hybrid structures have been studied. It has been shown that the average rate of transfer from QDs to the MLG can be estimated via photoinduced processes on the QDs' surfaces. A monolayer of CdSe QDs can double the photoresponse amplitude of multilayer graphene, without influencing its characteristic photoresponse time. It has been found that efficient charge or energy transfer from QDs to MLG with a rate higher than 3 × 108 s-1 strongly inhibits photoinduced processes on the QD surfaces and provides photostability for QD-based structures.

5.
Opt Express ; 28(3): 3528-3540, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32122019

ABSTRACT

Depressed-index buried and surface channel waveguides (type III) are produced in a bulk 3.5 at.% Tm3+:CALGO crystal by femtosecond direct-laser-writing at kHz repetition rate. The waveguides are characterized by confocal microscopy and µ-Raman spectroscopy. Under in-band-pumping at 1679 nm (3H6 → 3F4 transition) by a Raman fiber laser, the buried channel waveguide laser with a circular cladding (diameter: 60 µm) generated a continuous-wave output power of 0.81 W at 1866-1947 nm with a slope efficiency of 71.2% (versus the absorbed pump power) and showed a laser threshold of 200 mW. The waveguide propagation losses were as low as 0.3 ± 0.2 dB/cm. The laser performance under in-band pumping was superior compared pumping at ∼800 nm (3H6 → 3H4 transition), i.e., the convetional pump wavelength. Vibronic laser emission from the WG laser above 2 µm is also achieved. The low-loss behavior, the broadband emission properties and good power scaling capabilities indicate the suitability of Tm3+:CALGO waveguides for mode-locked laser operation at ∼2 µm.

6.
Opt Express ; 27(6): 8745-8755, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-31052687

ABSTRACT

We report the generation of mid-infrared (~2 µm) high repetition rate (MHz) sub-100 ns pulses in buried thulium-doped monoclinic double tungstate crystalline waveguide lasers using two-dimensional saturable absorber materials, graphene and MoS2. The waveguide (propagation losses of ~1 dB/cm) was micro-fabricated by means of ultrafast femtosecond laser writing. In the continuous-wave regime, the waveguide laser generated 247 mW at 1849.6 nm with a slope efficiency of 48.7%. The laser operated at the fundamental transverse mode with a linearly polarized output. With graphene as a saturable absorber, the pulse characteristics were 88 ns / 18 nJ (duration / energy) at a repetition rate of 1.39 MHz. Even shorter pulses of 66 ns were achieved with MoS2. Graphene and MoS2 are therefore promising for high repetition rate nanosecond Q-switched infrared waveguide lasers.

7.
Opt Lett ; 44(7): 1738-1741, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933137

ABSTRACT

We report on efficient laser operation of the first holmium monoclinic double tungstate waveguide laser fabricated by femtosecond direct laser writing. A depressed-index buried channel waveguide with a 60 µm diameter circular cladding was inscribed in 5 at.% Ho3+:KGd(WO4)2. It was characterized by confocal microscopy and µ-Raman and µ-luminescence spectroscopy, indicating well-preserved crystallinity of its core. Pumped by a thulium bulk laser, the holmium waveguide laser generated 212 mW at 2055 nm with a slope efficiency of 67.2%. The waveguide propagation losses were 0.94±0.2 dB/cm.

8.
Opt Express ; 26(23): 30826-30836, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30469975

ABSTRACT

We report on the first erbium (Er3+) doped double tungstate waveguide laser. As a gain material, we studied a monoclinic Er3+:KLu(WO4)2 crystal. A depressed-index buried channel waveguide formed by a 60 µm-diameter circular cladding was fabricated by 3D femtosecond direct laser writing. The waveguide was characterized by confocal laser microscopy, µ-Raman and µ-luminescence mapping, confirming that the crystallinity of the core is preserved. The waveguide laser, diode pumped at 981 nm, generated 8.9 mW at 1533.6 nm with a slope efficiency of 20.9% in the continuous-wave regime. The laser polarization was linear (E || Nm). The laser threshold was at 93 mW of absorbed pump power.

SELECTION OF CITATIONS
SEARCH DETAIL
...