Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 785: 146997, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33932665

ABSTRACT

Aquaculture is the fastest growing food production industry in the world yet research and guidance demonstrating strategic multi-objective zoning for sector expansion is scarce. Quantifying and mitigating conflicts and impact on sensitive coastal environments through jointly-optimized objectives for aquaculture and biodiversity simultaneously has not been tested yet. We here develop and evaluate six alternative planning scenarios for one of the European Union's highest priority bivalve shellfish aquaculture areas, the Emilia-Romagna Region in Italy. We i) develop an aquaculture profitability surface as a function of the distance from main ports, and in parallel build a fine-scale aquaculture suitability distribution surface for important commercial species using multi-criteria analysis; ii) prioritize protected areas for biodiversity while testing how different considerations of human impacts influence priorities; iii) simultaneously plan for aquaculture and biodiversity while minimizing impacts on other maritime activities. We compare results from different scenarios according to how well they capture suitable aquaculture habitats and minimize impacts. We introduce a new evaluation method for scenario comparison in spatial optimization using a nearest-neighbor analysis for spatial pattern similarities. Lastly, we test the "value of information" provided by our investment in developing the fine-scale suitability surface to improve efficiencies. We find that an integrated multi-objective zoning approach, which simultaneously optimizes for biodiversity and aquaculture, supports more efficient planning than traditional sector specific growth strategies. We also discovered that the fine-scale suitability model delivered a 5% more efficient solution than the simple distance function, highlighting the role of proxy cost surfaces and diminished returns from investing in comprehensive habitat suitability analysis in regions without much variation in key parameters. We offer evidence of improved efficiency and practical guidance for integrated planning in Blue Growth agendas. Our analysis can be applied in any context where multiple objectives occur for aquaculture sector growth and biodiversity conservation.


Subject(s)
Biodiversity , Conservation of Natural Resources , Aquaculture , Ecosystem , Humans , Italy
2.
Sci Total Environ ; 653: 612-629, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30414590

ABSTRACT

European seas are experiencing rapid development. The anthropogenic demand for marine resources and space exerts the need for novel concepts for sustainable resource exploitation and smart space allocation. Multi-Use (MU) is an emerging concept to overcome spatial claims and support Blue Growth, however its actual potentials and current status of implementation in different sea basins is to a large extent unexplored. An analytical framework using a mixed method approach is proposed for the identification and analysis of MU potentialities in eight EU countries of the Euro-Mediterranean sea basin. The paper addresses opportunities and challenges of ten existing and potential MU combinations driven by three maritime sectors: tourism, renewable energy and Oil & Gas industry. Opportunities and challenges for MU development were presented in terms of drivers, added values, barriers and impacts. Results show that highest potential for MU development are related to tourism-driven MU combinations (e.g. pescatourism), but also emerging MU potentials exist related to Floating Offshore Wind energy and aquaculture (Gulf of Lion) and the re-use of Oil & Gas decommissioned platforms (Northern-Central Adriatic Sea). Findings were discussed for their geospatial distribution and their policy, socio-economic, technical and environmental boundary conditions. Recommendations on actions to foster MU development in the Euro-Mediterranean sea space are provided.

3.
Conserv Biol ; 32(5): 1107-1117, 2018 10.
Article in English | MEDLINE | ID: mdl-29767466

ABSTRACT

The Adriatic and Ionian Region is an important area for both strategic maritime development and biodiversity conservation in the European Union (EU). However, given that both EU and non-EU countries border the sea, multiple legal and regulatory frameworks operate at different scales, which can hinder the coordinated long-term sustainable development of the region. Transboundary marine spatial planning can help overcome these challenges by building consensus on planning objectives and making the trade-offs between biodiversity conservation and its influence on economically important sectors more explicit. We address this challenge by developing and testing 4 spatial prioritization strategies with the decision-support tool Marxan, which meets targets for biodiversity conservation while minimizing impacts to users. We evaluated these strategies in terms of how priority areas shift under different scales of target setting (e.g., regional vs. country level). We also examined the trade-off between cost-efficiency and how equally solutions represent countries and maritime industries (n = 14) operating in the region with the protection-equality metric. We found negligible differences in where priority conservation areas were located when we set targets for biodiversity at the regional versus country scale. Conversely, the prospective impacts on industries, when considered as costs to be minimized, were highly divergent across scenarios and biased the placement of protection toward industries located in isolation or where there were few other industries. We recommend underpinning future marine spatial planning efforts in the region through identification of areas of national significance, transboundary areas requiring cooperation between countries, and areas where impacts on maritime industries require careful consideration of the trade-off between biodiversity conservation and socioeconomic objectives.


Subject(s)
Biodiversity , Conservation of Natural Resources , Costs and Cost Analysis , Prospective Studies , Software
4.
PeerJ Comput Sci ; 4: e165, 2018.
Article in English | MEDLINE | ID: mdl-33816818

ABSTRACT

This paper presents the Tools4MSP software package, a Python-based Free and Open Source Software (FOSS) for geospatial analysis in support of Maritime Spatial Planning (MSP) and marine environmental management. The suite was initially developed within the ADRIPLAN data portal, that has been recently upgraded into the Tools4MSP Geoplatform (data.tools4msp.eu), an integrated web platform that supports MSP through the application of different tools, e.g., collaborative geospatial modelling of cumulative effects assessment (CEA) and marine use conflict (MUC) analysis. The package can be used as stand-alone library or as collaborative webtool, providing user-friendly interfaces appropriate to decision-makers, regional authorities, academics and MSP stakeholders. An effective MSP-oriented integrated system of web-based software, users and services is proposed. It includes four components: the Tools4MSP Geoplatform for interoperable and collaborative sharing of geospatial datasets and for MSP-oriented analysis, the Tools4MSP package as stand-alone library for advanced geospatial and statistical analysis, the desktop applications to simplify data curation and the third party data repositories for multidisciplinary and multilevel geospatial datasets integration. The paper presents an application example of the Tools4MSP GeoNode plugin and an example of Tools4MSP stand-alone library for CEA in the Adriatic Sea. The Tools4MSP and the developed software have been released as FOSS under the GPL 3 license and are currently under further development.

5.
Sci Total Environ ; 609: 1627-1639, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28810514

ABSTRACT

This research presents a set of multi-objective spatial tools for sea planning and environmental management in the Adriatic Sea Basin. The tools address four objectives: 1) assessment of cumulative impacts from anthropogenic sea uses on environmental components of marine areas; 2) analysis of sea use conflicts; 3) 3-D hydrodynamic modelling of nutrient dispersion (nitrogen and phosphorus) from riverine sources in the Adriatic Sea Basin and 4) marine ecosystem services capacity assessment from seabed habitats based on an ES matrix approach. Geospatial modelling results were illustrated, analysed and compared on country level and for three biogeographic subdivisions, Northern-Central-Southern Adriatic Sea. The paper discusses model results for their spatial implications, relevance for sea planning, limitations and concludes with an outlook towards the need for more integrated, multi-functional tools development for sea planning.

6.
PLoS One ; 12(7): e0180501, 2017.
Article in English | MEDLINE | ID: mdl-28692688

ABSTRACT

Maritime spatial planning (MSP) is envisaged as a tool to apply an ecosystem-based approach to the marine and coastal realms, aiming at ensuring that the collective pressure of human activities is kept within acceptable limits. Cumulative impacts (CI) assessment can support science-based MSP, in order to understand the existing and potential impacts of human uses on the marine environment. A CI assessment includes several sources of uncertainty that can hinder the correct interpretation of its results if not explicitly incorporated in the decision-making process. This study proposes a three-level methodology to perform a general uncertainty analysis integrated with the CI assessment for MSP, applied to the Adriatic and Ionian Region (AIR). We describe the nature and level of uncertainty with the help of expert judgement and elicitation to include all of the possible sources of uncertainty related to the CI model with assumptions and gaps related to the case-based MSP process in the AIR. Next, we use the results to tailor the global uncertainty analysis to spatially describe the uncertainty distribution and variations of the CI scores dependent on the CI model factors. The results show the variability of the uncertainty in the AIR, with only limited portions robustly identified as the most or the least impacted areas under multiple model factors hypothesis. The results are discussed for the level and type of reliable information and insights they provide to decision-making. The most significant uncertainty factors are identified to facilitate the adaptive MSP process and to establish research priorities to fill knowledge gaps for subsequent planning cycles. The method aims to depict the potential CI effects, as well as the extent and spatial variation of the data and scientific uncertainty; therefore, this method constitutes a suitable tool to inform the potential establishment of the precautionary principle in MSP.


Subject(s)
Conservation of Natural Resources , Ecosystem , Models, Theoretical , Oceans and Seas , Uncertainty , Computer Simulation , Geography , Human Activities , Humans , Italy , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL
...