Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Autoimmun ; 39(4): 377-87, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22824211

ABSTRACT

Characteristics and function of effector T-cells with regulatory properties (induced Treg, "iTreg") in humans are ill defined. Here we report that a proportion of activated, initially CD4(+)CD25(-)CD127(+) effector T-cells from human peripheral blood can convert into T-cells with regulatory activity while concomitantly secreting IFNγ. Upon short-term culture in vitro these cells expressed a panel of common Treg markers, including FOXP3, CD25, GITR, HLA-DR and CTLA-4 in parallel with the Th1-specific transcription factor T-bet. Despite their own IFNγ secretion they effectively suppressed IFNγ secretion in effector T cells in parallel with inhibition of their proliferation. Highly purified IFNγ(+)iTreg shared many functional properties with nTreg: Their suppressive activity was antigen-independent, contact-mediated and cytokine-independent. Of note, in contrast to nTreg an inhibitor of TGF-ß1 signalling promoted the proliferation of IFNγ(+)iTreg, without abrogating their suppressive function. In addition in vivo in tonsils of patients with chronic tonsillitis an IFNγ-secreting subpopulation of the CD4(+)CD25(-)CD127(+)CD45RA(-) memory T helper cell population was detected, which exhibited regulatory properties as well. Our results support the existence of Th1-like adaptive Tregs in humans that express a robust regulatory phenotype, comparable to nTreg and at the same time share characteristics of Th1 cells. According to our in vitro data IFNγ(+)iTreg can emerge from activated effector T cells and downregulate Th1-mediated immune responses, supporting the hypothesis of effector T cell plasticity as a means for proper initiation and self regulation of inflammatory processes. This report characterizes a new subpopulation of human adaptive regulatory T-cells that derive from effector Th-cells and concomitantly express Th1-specific T-bet and IFNγ with Foxp3.


Subject(s)
Cell Differentiation/immunology , Immunity, Cellular , Interferon-gamma/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Tonsillitis/immunology , Antigens, CD/genetics , Antigens, CD/immunology , Biomarkers/metabolism , Cell Communication/genetics , Cell Communication/immunology , Cell Proliferation , Cells, Cultured , Chronic Disease , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression Regulation/immunology , Humans , Immunologic Memory , Interferon-gamma/genetics , Lymphocyte Activation , Signal Transduction , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/classification , T-Lymphocytes, Regulatory/metabolism , Tonsillitis/genetics , Tonsillitis/pathology
2.
Arthritis Rheum ; 58(7): 2120-30, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18576316

ABSTRACT

OBJECTIVE: CD4+,CD25high regulatory T (Treg) cells play a crucial role in the maintenance of self tolerance and prevention of organ-specific autoimmunity. The presence of many in vivo-preactivated CD4+,CD25++ T cells in patients with systemic lupus erythematosus (SLE) poses a difficulty in discriminating CD25++ activated T cells from CD25high Treg cells. To overcome this problem, we analyzed the phenotype and function of CD4+,CD25high,CD127(-/low) natural Treg (nTreg) cells isolated from the peripheral blood of patients with SLE. METHODS: CD4+,CD25high,CD127(-/low) nTreg cells and CD4+,CD25- responder T (Tresp) cells from patients with SLE and normal donors were separated by fluorescence-activated cell sorting. Cell proliferation was quantified by 3H-thymidine incorporation, and immunophenotyping of the cells was done using FACScan. RESULTS: Comparable percentages of CD4+,CD25high,FoxP3+ T cells were observed in patients with SLE and normal donors. Proliferation of SLE nTreg cells sorted into the subset CD4+,CD25high,CD127(-/low) was significantly decreased compared with that of SLE nTreg cells sorted into the subset CD4+,CD25high (mean +/- SEM 2,223 +/- 351 counts per minute versus 9,104 +/- 1,720 cpm, respectively), while in normal donors, these values were 802 +/- 177 cpm and 2,028 +/- 548 cpm, respectively, confirming that effector cell contamination was reduced. Notably, the suppressive activity of nTreg cells was intact in all groups. However, CD4+,CD25- Tresp cells isolated from patients with active SLE were significantly less sensitive than those from patients with inactive SLE to the suppressive function of autologous or normal donor CD4+,CD25high,CD127(-/low) nTreg cells. Furthermore, a significant inverse correlation was observed between the extent of T cell regulation in suppressor assays and the level of lupus disease activity. CONCLUSION: This study is the first to show that, in human SLE, impaired sensitivity of Tresp cells to the suppressive effects of a comparably functional, highly purified nTreg cell population leads to a defective suppression of T cell proliferation in active SLE. Studies aiming to define the mechanisms leading to Tresp cell resistance might help in the development of highly specific, alternative immunotherapeutic tools for the control of systemic autoimmune diseases such as SLE.


Subject(s)
Lupus Erythematosus, Systemic/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Aged , CD4 Antigens , Case-Control Studies , Cell Proliferation , Female , Forkhead Transcription Factors/metabolism , Humans , Interleukin-2 Receptor alpha Subunit , Interleukin-7 Receptor alpha Subunit , Lupus Erythematosus, Systemic/physiopathology , Male , Middle Aged , Phenotype , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...