Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Exp Bot ; 63(5): 2217-30, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22223812

ABSTRACT

A novel category of major intrinsic proteins which share weak similarities with previously identified aquaporin subfamilies was recently identified in land plants, and named X (for unrecognized) intrinsic proteins (XIPs). Because XIPs are still ranked as uncharacterized proteins, their further molecular characterization is required. Herein, a systematic fine-scale analysis of XIP sequences found in flowering plant databases revealed that XIPs are found in at least five groups. The phylogenetic relationship of these five groups with the phylogenetic organization of angiosperms revealed an original pattern of evolution for the XIP subfamily through distinct angiosperm taxon-specific clades. Of all flowering plant having XIPs, the genus Populus encompasses the broadest panel and the highest polymorphism of XIP isoforms, with nine PtXIP sequences distributed within three XIP groups. Comprehensive PtXIP gene expression patterns showed that only two isoforms (PtXIP2;1 and PtXIP3;2) were transcribed in vegetative tissues. However, their patterns are contrasted, PtXIP2;1 was ubiquitously accumulated whereas PtXIP3;2 was predominantly detected in wood and to a lesser extent in roots. Furthermore, only PtXIP2;1 exhibited a differential expression in leaves and stems of drought-, salicylic acid-, or wounding-challenged plants. Unexpectedly, the PtXIPs displayed different abilities to alter water transport upon expression in Xenopus laevis oocytes. PtXIP2;1 and PtXIP3;3 transported water while other PtXIPs did not.


Subject(s)
Aquaporins/genetics , Evolution, Molecular , Magnoliopsida/genetics , Phylogeny , Polymorphism, Genetic/genetics , Populus/genetics , Amino Acid Sequence , Animals , Aquaporins/classification , Aquaporins/metabolism , Biological Transport , Droughts , Environment , Gene Expression Regulation, Plant/physiology , Magnoliopsida/metabolism , Magnoliopsida/physiology , Molecular Sequence Data , Multigene Family , Organ Specificity , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Proteins/classification , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/physiology , Plant Stems/genetics , Plant Stems/metabolism , Plant Stems/physiology , Populus/metabolism , Populus/physiology , Protein Isoforms , Sequence Alignment , Water/metabolism , Wood/genetics , Wood/metabolism , Wood/physiology , Xenopus laevis/genetics , Xenopus laevis/metabolism
2.
J Exp Bot ; 56(420): 2683-93, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16143719

ABSTRACT

The biotrophic oomycete Plasmopara halstedii is the causal agent of downy mildew in sunflower. It penetrates the roots of both susceptible and resistant sunflower lines and grows through the hypocotyls towards the upper part of the seedling. RT-PCR analysis has shown that resistance is associated with the activation of a hsr203J-like gene, which is a molecular marker of the hypersensitive reaction in tobacco. Activation of this gene was specifically observed during the incompatible interaction and coincided with cell collapse in the hypocotyls. This HR was also associated with the early and local activation of the NPR1 gene which is a key component in the establishment of the SAR. No such HR or a significant activation of the hsr203J-like gene were observed during the compatible combination. These results suggest that the resistance of sunflower to P. halstedii is associated with an HR which fails to halt the parasite. By contrast, this HR triggers a SAR which takes places in the upper part of the hypocotyls and eventually leads to the arrest of parasite growth. A model describing the resistance of plants to root-infecting oomycetes is proposed.


Subject(s)
Helianthus/microbiology , Helianthus/physiology , Hypocotyl/microbiology , Hypocotyl/physiology , Oomycetes/physiology , Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Helianthus/genetics , Helianthus/immunology , Hydrogen Peroxide/metabolism , Hypocotyl/immunology , Oomycetes/immunology , Plant Diseases/genetics , Plant Diseases/microbiology , Salicylic Acid/pharmacology , Seedlings
3.
Plant Physiol ; 125(4): 2164-72, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11299395

ABSTRACT

Involvement of an oxidative burst, usually related to incompatible plant/pathogen interactions leading to hypersensitive reactions, was investigated with Erwinia amylovora, the causal agent of fire blight of Maloideae subfamily of Rosaceae, in interaction with pear (Pyrus communis; compatible situation) and tobacco (Nicotiana tabacum; incompatible situation). As expected, this necrogenic bacterium induced in tobacco a sustained production of superoxide anion, lipid peroxidation, electrolyte leakage, and concomitant increases of several antioxidative enzymes (ascorbate peroxidases, glutathion reductases, glutathion-S-transferases, and peroxidases), in contrast to the compatible pathogen Pseudomonas syringae pv tabaci, which did not cause such reactions. In pear leaves, however, inoculations with both the disease- and the hypersensitive reaction-inducing bacteria (E. amylovora and P. syringae pv tabaci, respectively) resulted in superoxide accumulation, lipid peroxidation, electrolyte leakage, and enzyme induction at similar rates and according to equivalent time courses. The unexpected ability of E. amylovora to generate an oxidative stress even in compatible situation was linked to its functional hrp (for hypersensitive reaction and pathogenicity) cluster because an Hrp secretion mutant of the bacteria did not induce any plant response. It is suggested that E. amylovora uses the production of reactive oxygen species as a tool to provoke host cell death during pathogenesis to invade plant tissues. The bacterial exopolysaccharide could protect this pathogen against the toxic effects of oxygen species since a non-capsular mutant of E. amylovora induced locally the same responses than the wild type but was unable to further colonize the plant.


Subject(s)
Erwinia/pathogenicity , Fruit/microbiology , Fruit/physiology , Oxidative Stress/physiology , Superoxides/metabolism , Ascorbate Peroxidases , Electrolytes/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Kinetics , Peroxidases/metabolism , Plant Diseases , Plant Leaves/microbiology , Plant Leaves/physiology , Plants, Toxic , Pseudomonas/pathogenicity , Rosales/microbiology , Rosales/physiology , Nicotiana/microbiology , Nicotiana/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...