Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(34): e2204618119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969745

ABSTRACT

Occludin is a tetramembrane-spanning tight junction protein. The long C-terminal cytoplasmic domain, which represents nearly half of occludin sequence, includes a distal bundle of three α-helices that mediates interactions with other tight junction components. A short unstructured region just proximal to the α-helical bundle is a phosphorylation hotspot within which S408 phosphorylation acts as molecular switch that modifies tight junction protein interactions and barrier function. Here, we used NMR to define the effects of S408 phosphorylation on intramolecular interactions between the unstructured region and the α-helical bundle. S408 pseudophosphorylation affected conformation at hinge sites between the three α-helices. Further studies using paramagnetic relaxation enhancement and microscale thermophoresis indicated that the unstructured region interacts with the α-helical bundle. These interactions between the unstructured domain are enhanced by S408 phosphorylation and allow the unstructured region to obstruct the binding site, thereby reducing affinity of the occludin tail for zonula occludens-1 (ZO-1). Conversely, S408 dephosphorylation attenuates intramolecular interactions, exposes the binding site, and increases the affinity of occludin binding to ZO-1. Consistent with an increase in binding to ZO-1, intravital imaging and fluorescence recovery after photobleaching (FRAP) analyses of transgenic mice demonstrated increased tight junction anchoring of enhanced green fluorescent protein (EGFP)-tagged nonphosphorylatable occludin relative to wild-type EGFP-occludin. Overall, these data define the mechanisms by which S408 phosphorylation modifies occludin tail conformation to regulate tight junction protein interactions and paracellular permeability.


Subject(s)
Phosphoproteins , Serine , Animals , Mice , Occludin/genetics , Occludin/metabolism , Phosphoproteins/metabolism , Phosphorylation , Protein Conformation, alpha-Helical , Serine/metabolism , Tight Junctions/metabolism , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
2.
Biochemistry ; 60(36): 2691-2703, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34029056

ABSTRACT

Using atomic force microscopy (AFM) and nuclear magnetic resonance (NMR), we describe small Aß40 oligomers, termed nanodroplet oligomers (NanDOs), which form rapidly and at Aß40 concentrations too low for fibril formation. NanDOs were observed in putatively monomeric solutions of Aß40 (e.g., by size exclusion chromatography). Video-rate scanning AFM shows rapid fusion and dissolution of small oligomer-sized particles, of which the median size increases with peptide concentration. In NMR (13C HSQC), a small number of chemical shifts changed with a change in peptide concentration. Paramagnetic relaxation enhancement NMR experiments also support the formation of NanDOs and suggest prominent interactions in hydrophobic domains of Aß40. Addition of Zn2+ to Aß40 solutions caused flocculation of NanDO-containing solutions, and selective loss of signal intensity in NMR spectra from residues in the N-terminal domain of Aß40. NanDOs may represent the earliest aggregated form of Aß40 in the aggregation pathway and are akin to premicelles in solutions of amphiphilies.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Magnetic Resonance Spectroscopy/methods , Microscopy, Atomic Force/methods , Nanoparticles/chemistry , Protein Aggregates/physiology , Alzheimer Disease/metabolism , Electron Spin Resonance Spectroscopy/methods , Humans
3.
Protein Expr Purif ; 162: 72-82, 2019 10.
Article in English | MEDLINE | ID: mdl-31022450

ABSTRACT

We present a straightforward, versatile method for expressing and purifying ß-amyloid (Aß40) and transmembrane peptides derived from ß-amyloid precursor protein (Aß55). In principle, these methods should be applicable to other types of strongly aggregating peptides. We start with a DNA plasmid encoding a HexaHis tag with a flexible, hydrophilic linker sequence, followed by a cleavage site, and then Aß peptides. The HexaHis tag rather than a protein fusion partner (e.g., GST) obviates the need for a folded protein in affinity purification. Second, we present two cleavage methods, using either Factor Xa or BNPS-Skatole. Although the latter procedure requires subsequent reduction of the product, we describe methods for minimizing side reactions. Because the use of BNPS-Skatole obviates the need for a folded protein in the cleavage reaction, it is compatible with harsh conditions (e.g., inclusion of detergents and denaturants) needed to solubilize the fusion proteins; such conditions tend to inactivate Factor Xa. Finally, we also describe purification strategies for Aß40 and Aß55 using FPLC and/or reverse phase HPLC. Yields of peptide after these BNPS-Skatole cleavage and peptide reduction, though subquantitative, greatly exceed those obtained using Factor Xa cleavage, as the reaction of BNPS-Skatole is insensitive to the presence of detergents and denaturants, and therefore can be used to produce highly aggregative and low solubility peptides such as Aß55. Trp is a low abundance amino acid in proteins generally, and for peptides like Aß55, and other transmembane peptides lacking Trp in relevant positions, this cleavage method remains a useful option.


Subject(s)
Amyloid beta-Peptides/chemistry , Biochemistry/methods , Amino Acid Sequence , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/isolation & purification , Amyloid beta-Peptides/metabolism , Biocatalysis , Chromatography, Affinity , Chromatography, High Pressure Liquid , Factor Xa/chemistry , Protein Folding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Solubility
4.
J Struct Biol ; 176(2): 238-49, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21843645

ABSTRACT

The ß-hydroxyacyl-acyl carrier protein dehydratase of Plasmodium falciparum (PfFabZ) catalyzes the third and important reaction of the fatty acid elongation cycle. The crystal structure of PfFabZ is available in hexameric (active) and dimeric (inactive) forms. However, PfFabZ has not been crystallized with any bound inhibitors until now. We have designed a new condition to crystallize PfFabZ with its inhibitors bound in the active site, and determined the crystal structures of four of these complexes. This is the first report on any FabZ enzyme with active site inhibitors that interact directly with the catalytic residues. Inhibitor binding not only stabilized the substrate binding loop but also revealed that the substrate binding tunnel has an overall shape of "U". In the crystal structures, residue Phe169 located in the middle of the tunnel was found to be in two different conformations, open and closed. Thus, Phe169, merely by changing its side chain conformation, appears to be controlling the length of the tunnel to make it suitable for accommodating longer substrates. The volume of the substrate binding tunnel is determined by the sequence as well as by the conformation of the substrate binding loop region and varies between organisms for accommodating fatty acids of different chain lengths. This report on the crystal structures of the complexes of PfFabZ provides the structural basis of the inhibitory mechanism of the enzyme that could be used to improve the potency of inhibitors against an important component of fatty acid synthesis common to many infectious organisms.


Subject(s)
Enoyl-CoA Hydratase/chemistry , Plasmodium falciparum/enzymology , Protozoan Proteins/chemistry , Amino Acid Motifs , Amino Acid Sequence , Antimalarials/chemistry , Catalytic Domain , Computer Simulation , Crystallography, X-Ray , Enoyl-CoA Hydratase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Protein Binding , Sequence Homology, Amino Acid , Surface Properties
5.
FEBS Lett ; 585(4): 601-5, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21266176

ABSTRACT

The interaction between a peptide encompassing the SH3 and SH2 binding motifs of focal adhesion kinase (FAK) and the Src SH3-SH2 domains has been investigated with NMR spectroscopy and calorimetry. The binding to both motifs is anti-cooperative. Reduction of the long linker connecting the motifs does not lead to cooperativity. Short linkers that do not allow simultaneous intramolecular binding of the peptide to both motifs cause peptide-mediated dimerisation, even with a linker of only three amino acids. The role of the SH3 binding motif is discussed in view of the independent nature of the SH interactions.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/metabolism , Peptides/chemistry , Peptides/metabolism , Protein Interaction Domains and Motifs , src Homology Domains , src-Family Kinases/metabolism , Amino Acid Sequence , Animals , Calorimetry , Focal Adhesion Protein-Tyrosine Kinases/chemistry , Focal Adhesion Protein-Tyrosine Kinases/genetics , Humans , Magnetic Resonance Spectroscopy , Mice , Models, Molecular , Protein Conformation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , src-Family Kinases/chemistry , src-Family Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...