Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(24): 248101, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38181141

ABSTRACT

Transport properties of doped conjugated polymers (CPs) have been widely analyzed with the Gaussian disorder model (GDM) in conjunction with hopping transport between localized states. These models reveal that even in highly doped CPs, a majority of carriers are still localized because dielectric permittivity of CPs is well below that of inorganic materials, making Coulomb interactions between carriers and dopant counterions much more pronounced. However, previous studies within the GDM did not consider the role of screening the dielectric interactions by carriers. Here we implement carrier screening in the Debye-Hückel formalism in our calculations of dopant-induced energetic disorder, which modifies the Gaussian density of states (DOS). Then we solve the Pauli master equation using Miller-Abrahams hopping rates with states from the resulting screened DOS to obtain conductivity and Seebeck coefficient across a broad range of carrier concentrations and compare them to measurements. Our results show that screening has significant impact on the shape of the DOS and consequently on carrier transport, particularly at high doping. We prove that the slope of Seebeck coefficient versus electric conductivity, which was previously thought to be universal, is impacted by screening and decreases for systems with small dopant-carrier separation, explaining our measurements. We also show that thermoelectric power factor is underestimated by a factor of ∼10 at higher doping concentrations if screening is neglected. We conclude that carrier screening plays a crucial role in curtailing dopant-induced energetic disorder, particularly at high carrier concentrations.

2.
Adv Sci (Weinh) ; 8(19): e2101087, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34382366

ABSTRACT

Conjugated polymers need to be doped to increase charge carrier density and reach the electrical conductivity necessary for electronic and energy applications. While doping increases carrier density, Coulomb interactions between the dopant molecules and the localized carriers are poorly screened, causing broadening and a heavy tail in the electronic density-of-states (DOS). The authors examine the effects of dopant-induced disorder on two complimentary charge transport properties of semiconducting polymers, the Seebeck coefficient and electrical conductivity, and demonstrate a way to mitigate them. Their simulations, based on a modified Gaussian disorder model with Miller-Abrahams hopping rates, show that dopant-induced broadening of the DOS negatively impacts the Seebeck coefficient versus electrical conductivity trade-off curve. Increasing the dielectric permittivity of the polymer mitigates dopant-carrier Coulomb interactions and improves charge transport, evidenced by simultaneous increases in conductivity and the Seebeck coefficient. They verified this increase experimentally in iodine-doped P3HT and P3HT blended with barium titanate (BaTiO3 ) nanoparticles. The addition of 2% w/w BaTiO3 nanoparticles increased conductivity and Seebeck across a broad range of doping, resulting in a fourfold increase in power factor. Thus, these results show a promising path forward to reduce the dopant-charge carrier Coulomb interactions and mitigate their adverse impact on charge transport.

3.
Biophys J ; 119(3): 567-580, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32652059

ABSTRACT

Molecular motors have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction of these motors is a root cause of many pathologies necessitating the need for intrinsic control over molecular motor function. Herein, we demonstrate that positional isomerism can be used as a simple and powerful tool to control the molecular motor of muscle, myosin. Using three isomers of a synthetic non-nucleoside triphosphate, we demonstrate that myosin's force- and motion-generating capacity can be dramatically altered at both the ensemble and single-molecule levels. By correlating our experimental results with computation, we show that each isomer exerts intrinsic control by affecting distinct steps in myosin's mechanochemical cycle. Our studies demonstrate that subtle variations in the structure of an abiotic energy source can be used to control the force and motility of myosin without altering myosin's structure.


Subject(s)
Muscle Contraction , Myosins , Actins/metabolism , Adenosine Triphosphate , Isomerism , Mechanical Phenomena , Muscles/metabolism , Myosins/metabolism
4.
ACS Appl Mater Interfaces ; 12(7): 8183-8188, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31997637

ABSTRACT

Organic-nanoparticle-based solar cells have drawn great attention due to their eco-friendly and environmentally friendly fabrication procedure. However, these surfactant-stabilized nanoparticles suffer open-circuit voltage loss due to charge trapping and poor extraction rate at the polymer cathode interface. Here, we have investigated the origin of voltage loss and charge trapping in surfactant-stabilized nanoparticle-based devices. Efficient organic photovoltaic (OPV) devices have been fabricated from an aqueous dispersion of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles stabilized by anionic surfactants. AC impedance spectroscopy has been used to understand the charge transport properties in the dark and in operando conditions. We have demonstrated the similarities in the charge transport properties, as well as photocarrier dynamics of the nanoparticle-based OPVs and the bulk heterojunction OPVs despite fundamental differences in their nanostructure morphology. This study emphasizes the possibility of fabricating highly efficient OPVs from organic nanoparticles by reducing surface defects and excess doping of the polymers.

5.
Sci Rep ; 9(1): 5820, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30967596

ABSTRACT

Organic materials have attracted recent interest as thermoelectric (TE) converters due to their low cost and ease of fabrication. We examine the effects of disorder on the TE properties of semiconducting polymers based on the Gaussian disorder model (GDM) for site energies while employing Pauli's master equation approach to model hopping between localized sites. Our model is in good agreement with experimental results and a useful tool to study hopping transport. We show that stronger overlap between sites can improve the electrical conductivity without adversely affecting the Seebeck coefficient. We find that positional disorder aids the formation of new conduction paths with an increased probability of carriers in high energy sites, leading to an increase in electrical conductivity while leaving the Seebeck unchanged. On the other hand, energetic disorder leads to increased energy gaps between sites, hindering transport. This adversely affects conductivity while only slightly increasing Seebeck and results in lower TE power factors. Furthermore, positional correlation primarily affects conductivity, while correlation in site energies has no effect on TE properties of polymers. Our results also show that the Lorenz number increases with Seebeck coefficient, largely deviating from the Sommerfeld value, in agreement with experiments and in contrast to band conductors. We conclude that reducing energetic disorder and positional correlation, while increasing positional disorder can lead to higher TE power factors.

6.
Sci Rep ; 7(1): 17773, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259213

ABSTRACT

Energy densities of ~510 J/g (max: 698 J/g) have been achieved in azobenzene-based syndiotactic-rich poly(methacrylate) polymers. The processing solvent and polymer-solvent interactions are important to achieve morphologically optimal structures for high-energy density materials. This work shows that morphological changes of solid-state syndiotactic polymers, driven by different solvent processings play an important role in controlling the activation energy of Z-E isomerization as well as the shape of the DSC exotherm. Thus, this study shows the crucial role of processing solvents and thin film structure in achieving higher energy densities.

7.
Nano Lett ; 16(9): 5852-60, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27517466

ABSTRACT

We synthesized distorted octahedral (T') molybdenum ditelluride (MoTe2) and investigated its vibrational properties with Raman spectroscopy, density functional theory, and symmetry analysis. Compared to results from the high-temperature centrosymmetric monoclinic (T'mo) phase, four new Raman bands emerge in the low-temperature orthorhombic (T'or) phase, which was recently predicted to be a type II Weyl semimetal. Crystal-angle-dependent, light-polarization-resolved measurements indicate that all the observed Raman peaks belong to two categories: those vibrating along the zigzag Mo atomic chain (z-modes) and those vibrating in the mirror plane (m-modes) perpendicular to the zigzag chain. Interestingly, the low-energy shear z-mode and shear m-mode, absent from the T'mo spectra, become activated when sample cooling induces a phase transition to the T'or crystal structure. We interpret this observation as a consequence of inversion-symmetry breaking, which is crucial for the existence of Weyl fermions in the layered crystal. Our temperature-dependent Raman measurements further show that both the high-energy m-mode at ∼130 cm(-1) and the low-energy shear m-mode at ∼12 cm(-1) provide useful gauges for monitoring the broken inversion symmetry in the crystal.

8.
Nano Lett ; 14(9): 5238-43, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25102376

ABSTRACT

We address here the need for a general strategy to control molecular assembly over multiple length scales. Efficient organic photovoltaics require an active layer comprised of a mesoscale interconnected networks of nanoscale aggregates of semiconductors. We demonstrate a method, using principles of molecular self-assembly and geometric packing, for controlled assembly of semiconductors at the nanoscale and mesoscale. Nanoparticles of poly(3-hexylthiophene) (P3HT) or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were fabricated with targeted sizes. Nanoparticles containing a blend of both P3HT and PCBM were also fabricated. The active layer morphology was tuned by the changing particle composition, particle radii, and the ratios of P3HT:PCBM particles. Photovoltaic devices were fabricated from these aqueous nanoparticle dispersions with comparable device performance to typical bulk-heterojunction devices. Our strategy opens a revolutionary pathway to study and tune the active layer morphology systematically while exercising control of the component assembly at multiple length scales.

9.
Adv Mater ; 25(44): 6411-5, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-23996540

ABSTRACT

Charge transport through a semiconducting nanoparticle assembly is demonstrated. The hole mobility of low and high molecular weight and regioreglular poly(3-hexylthiophene) (P3HT) nanoparticles is on the order of 2 × 10(-4) to 5 × 10(-4) cm(2) V(-1) s(-1) , which is comparable to drop-cast thin films of pristine P3HT. Various methods are employed to understand the nature and importance of the nanoparticle packing.

10.
ACS Nano ; 6(12): 10750-8, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23176297

ABSTRACT

Nanoparticles derived from π-conjugated polymers have gained widespread attention as active layer materials in various organic electronics applications. The optoelectronic, charge transfer, and charge transport properties of π-conjugated polymers are intimately connected to the polymer aggregate structure. Herein we show that the internal aggregate structure of regioregular poly(3-hexylthiophene) (P3HT) within polymer nanoparticles can be tuned by solvent composition during nanoparticle fabrication through the miniemulsion process. Using absorption spectra and single-NP photoluminescence decay properties, we show that a solvent mixture consisting of a low boiling good solvent and a high boiling marginal solvent results in polymer aggregate structure with a higher degree of uniformity and structural order. We find that the impact of solvent on the nature of P3HT aggregation within nanoparticles is different from what has been reported in thin films.

11.
J Phys Chem A ; 116(22): 5349-52, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22512357

ABSTRACT

We report on the single-molecule chiroptical properties of "right"-handed bridged triaryl amine helicene dimers, MH2. Using an experimental setup to precisely define the circular excitation polarization at the sample plane, we investigated the circular dichroic response in luminescence from individual molecules in which induced ellipticity from microscope optics is minimized. Our results comparing circular anisotropies in fluorescence excitation from MH2 and perylene diimide (PDI), an achiral, centrosymmetric chromophore, demonstrate a significant reduction in the breadth of the distribution of circular dissymmetry parameters obtained from modulation of the circularly polarized excitation source (457 nm). For PDI, we observe a symmetric distribution of circular anisotropy parameters centered about zero, with a fwhm of 0.25. For MH2, we observe an asymmetric distribution peaked at g = -0.09, with a slightly larger width as the corresponding PDI distribution. These results indicate that the large dissymmetry parameters (|g| > 0.5) in fluorescence excitation described in our original report (Hassey, R.; et al. Chirality 2008, 20, 1039-1046 and Hassey, R.; et al. Science 2006, 314, 1437-1439) were indeed affected by (at the time, unknown) linear polarization artifacts. However, the present results on MH2 provide compelling evidence for single-molecule circular dissymmetries much larger than solution or thin-film ensemble values, defined primarily by the enhanced rotatory strength (relative to the monomer), and restricted orientation at the sample surface.

12.
Phys Chem Chem Phys ; 14(19): 6749-54, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22509495

ABSTRACT

A donor-acceptor dyad model system using a flavin moiety as a photo-active acceptor has been synthesized for an energy and photo-induced electron transfer study. The photophysical investigations of the dyad revealed a multi-path energy and electron transfer process with a very high transfer efficiency. The photo-activity of flavin was believed to play an important role in the process, implying the potential application of flavin as a novel acceptor molecule for photovoltaics.

13.
J Phys Chem A ; 115(21): 5423-34, 2011 Jun 02.
Article in English | MEDLINE | ID: mdl-21553870

ABSTRACT

We have modeled structures and energetics of anhydrous proton-conducting wires: tethered hydrogen-bonded chains of the form ···HX···HX···HX···, with functional groups HX = imidazole, triazole, and formamidine; formic, sulfonic, and phosphonic acids. We have applied density functional theory (DFT) to model proton wires up to 19 units long, where each proton carrier is linked to an effective backbone to mimic polymer tethering. This approach allows the direct calculation of hydrogen bond strengths. The proton wires were found to be stabilized by strong hydrogen bonds (up to 50 kJ/mol) whose strength correlates with the proton affinity of HX [related to pK(b)(HX)] and not to pK(a)(HX) as is often assumed. Geometry optimizations and ab initio molecular dynamics near 400 K on imidazole-based proton wires both predict that adding a proton to the end of such wires causes the excess charge to embed into the interior segments of these wires. Proton translocation energy landscapes for imidazole-based wires are sensitive to the imidazole attachment point (head or feet) and to wire architecture (linear or interdigitated). Linear imidazole wires with head-attachment exhibit low barriers for intrawire proton motion, rivaling proton diffusion in liquid imidazole. Excess charge relaxation from the edge of wires is found to be dominated by long-range Grotthuss shuttling for distances as long as 42 Å, especially for interdigitated wires. For imidazole, we predict that proton translocation is controlled by the energetics of desorption from the proton wire, even for relatively long wires (600 imidazole units). Proton desorption energies show no correlation with functional group properties, suggesting that proton desorption is a collective process in proton wires.

14.
Chirality ; 21 Suppl 1: E265-76, 2009.
Article in English | MEDLINE | ID: mdl-20014034

ABSTRACT

Chirality in molecular systems plays profoundly important roles in chemistry and physics. Most chemistry students are introduced to the concept of chirality through demonstrations of the interaction of chiral molecules with polarized light manifested as an "optical rotation" leading to the "(+)" and "(-)" [or dextrorotatory (d-) and levorotatory (l-)] designations of chiral compounds, with the subsequent determination of absolute stereochemical configuration by chemical or physical means enabling application of the familiar "R" and "S" labels. Although the intrinsic molecular parameters that control the dissymmetric light-matter interaction in chiral systems are well understood, we have only recently begun to ask questions regarding the role of local molecular environment and hidden heterogeneities associated with the ensemble-averaged molecular chiroptical response. In this mini-review, we discuss some of our recent research on application of single-molecule spectroscopy as a tool for probing heterogeneities and fluctuations of chiroptical dissymmetries in condensed phase.


Subject(s)
Chemistry, Physical/methods , Circular Dichroism , Fluorescence , Models, Chemical , Polycyclic Compounds/chemistry , Spectrum Analysis , Stereoisomerism
15.
Chirality ; 20(9): 1039-46, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18512254

ABSTRACT

We present results of fluorescence excitation circular dichroism studies of the chiroptical response of single (bridged triarylamine) helicene molecules immobilized at a polymer interface. We extract directly dissymmetry parameters, and corresponding probability distributions, associated with the single-molecule fluorescence excitation associated with modulation of a circular polarized excitation field for three different excitation wavelengths (405, 440, 457 nm) showing circular dichroism in bulk films. The observed single molecule chiroptical response is anomalously large in comparison with the results of time-dependent density functional calculations, and the observed defocused emission patterns seem to indicate a higher multipole nature to the transition probed. Our results provide new insights into chiroptical properties of chiral fluorophores that are hidden under the extensive averaging associated with conventional chiroptical probes.

16.
Science ; 314(5804): 1437-9, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17082419

ABSTRACT

Chirally sensitive measurement techniques have generally been restricted to bulk samples. Here, we report the observation of fluorescence-detected circular dichroism (FDCD) from single (bridgedtriarylamine) helicene molecules by using an excitation wavelength (457 nanometers) in the vicinity of an electronic transition that shows circular dichroism in bulk samples. The distributions of dissymmetry (g) parameters by analysis of signals from pure M- and P-type diastereomers are almost perfect mirror images of one another, each spanning a range of both positive and negative values. In addition, we observe a well-defined structure in the histogram of dissymmetry parameters suggestive of specific molecular orientations at the polymer interface. These single-molecule results highlight strong intrinsic circular dichroism responses that can be obscured by cancellation effects in ensemble measurements of a randomly oriented bulk sample.

SELECTION OF CITATIONS
SEARCH DETAIL
...