Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36555310

ABSTRACT

Blood-based biomarkers are needed for the early diagnosis of Alzheimer's disease (AD). We analyzed longitudinal human plasma samples from AD and control cases to identify biomarkers for the early diagnosis of AD. Plasma samples were grouped based on clinical diagnosis at the time of collection: AD, mild cognitive impairment (MCI), and pre-symptomatic (preMCI). Samples were analyzed by ELISA using a panel of reagents against nine different AD-related amyloid-ß (Aß), tau, or TDP-43 variants. Receiver operating characteristic (ROC) curves of different biomarker panels for different diagnostic sample groups were determined. Analysis of all of the samples gave a sensitivity of 92% and specificity of 76% for the diagnosis of AD. Early-stage diagnosis of AD, utilizing only the preMCI and MCI samples, identified 88% of AD cases. Using sex-biased biomarker panels, early diagnosis of AD cases improved to 96%. Using the sex-biased panels, we also identified 6 of the 25 control group cases as being at high risk of AD, which is consistent with what is expected given the advanced age of the control cases. Specific AD-associated protein variants are effective blood-based biomarkers for the early diagnosis of AD. Notably, significant differences were observed in biomarker profiles for the early detection of male and female AD cases.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Male , Female , Humans , tau Proteins , Amyloid beta-Peptides , Cognitive Dysfunction/diagnosis , Early Diagnosis , Hematologic Tests , Biomarkers , Peptide Fragments
2.
Acta Neuropathol ; 143(5): 547-569, 2022 05.
Article in English | MEDLINE | ID: mdl-35389045

ABSTRACT

Selective neuronal vulnerability to protein aggregation is found in many neurodegenerative diseases including Alzheimer's disease (AD). Understanding the molecular origins of this selective vulnerability is, therefore, of fundamental importance. Tau protein aggregates have been found in Wolframin (WFS1)-expressing excitatory neurons in the entorhinal cortex, one of the earliest affected regions in AD. The role of WFS1 in Tauopathies and its levels in tau pathology-associated neurodegeneration, however, is largely unknown. Here we report that WFS1 deficiency is associated with increased tau pathology and neurodegeneration, whereas overexpression of WFS1 reduces those changes. We also find that WFS1 interacts with tau protein and controls the susceptibility to tau pathology. Furthermore, chronic ER stress and autophagy-lysosome pathway (ALP)-associated genes are enriched in WFS1-high excitatory neurons in human AD at early Braak stages. The protein levels of ER stress and autophagy-lysosome pathway (ALP)-associated proteins are changed in tau transgenic mice with WFS1 deficiency, while overexpression of WFS1 reverses those changes. This work demonstrates a possible role for WFS1 in the regulation of tau pathology and neurodegeneration via chronic ER stress and the downstream ALP. Our findings provide insights into mechanisms that underpin selective neuronal vulnerability, and for developing new therapeutics to protect vulnerable neurons in AD.


Subject(s)
Alzheimer Disease , Tauopathies , Alzheimer Disease/pathology , Animals , Lysosomes/metabolism , Mice , Mice, Transgenic , Neurons/pathology , Protein Aggregates , Tauopathies/pathology
3.
Stem Cell Rev Rep ; 18(2): 696-717, 2022 02.
Article in English | MEDLINE | ID: mdl-33180261

ABSTRACT

Many neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis and Huntington's disease, are characterized by the progressive accumulation of abnormal proteinaceous assemblies in specific cell types and regions of the brain, leading to cellular dysfunction and brain damage. Although animal- and in vitro-based studies of NDs have provided the field with an extensive understanding of some of the mechanisms underlying these diseases, findings from these studies have not yielded substantial progress in identifying treatment options for patient populations. This necessitates the development of complementary model systems that are better suited to recapitulate human-specific features of ND pathogenesis. Three-dimensional (3D) culture systems, such as cerebral organoids generated from human induced pluripotent stem cells, hold significant potential to model NDs in a complex, tissue-like environment. In this review, we discuss the advantages of 3D culture systems and 3D modeling of NDs, especially AD and FTD. We also provide an overview of the challenges and limitations of the current 3D culture systems. Finally, we propose a few potential future directions in applying state-of-the-art technologies in 3D culture systems to understand the mechanisms of NDs and to accelerate drug discovery. Graphical abstract.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Humans , Organoids/pathology
4.
Materials (Basel) ; 14(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922624

ABSTRACT

Na1/2Bi1/2TiO3-based materials have gained considerable attention for their potential to exhibit giant strain, very-high ionic conductivity comparable to yttria stabilized zirconia or high mechanical quality factor for use in high power ultrasonics. In recent times, quenching Na1/2Bi1/2TiO3-based compositions have been demonstrated to enhance the thermal depolarization temperature, thus increasing the operational temperature limit of these materials in application. This work investigates the role of quenching-induced changes in the defect chemistry on the dielectric, ferroelectric and piezoelectric properties of quenched Na1/2Bi1/2TiO3-BaTiO3. The quenched samples indeed demonstrate an increase in the bulk conductivity. Nevertheless, while subsequent annealing of the quenched samples in air/oxygen atmosphere reverts back the depolarization behaviour to that of a furnace cooled specimen, the bulk conductivity remains majorly unaltered. This implies a weak correlation between the defect chemistry and enhanced thermal stability of the piezoelectric properties and hints towards other mechanisms at play. The minor role of oxygen vacancies is further reinforced by the negligible (10-15%) changes in the mechanical quality factor and hysteresis loss.

5.
Neurosci Biobehav Rev ; 118: 775-783, 2020 11.
Article in English | MEDLINE | ID: mdl-32949681

ABSTRACT

L.P. Li, L. Venkataraman, S. Chen, and H.J. Fu. Function of WFS1 and WFS2 in the Central Nervous System: Implications for Wolfram Syndrome and Alzheimer's Disease. NEUROSCI BIOBEHAV REVXXX-XXX,2020.-Wolfram syndrome (WS) is a rare monogenetic spectrum disorder characterized by insulin-dependent juvenile-onset diabetes mellitus, diabetes insipidus, optic nerve atrophy, hearing loss, progressive neurodegeneration, and a wide spectrum of psychiatric manifestations. Most WS patients belong to Wolfram Syndrome type 1 (WS1) caused by mutations in the Wolfram Syndrome 1 (WFS1/Wolframin) gene, while a small fraction of patients belongs to Wolfram Syndrome type 2 (WS2) caused by pathogenic variants in the CDGSH Iron Sulfur Domain 2 (CISD2/WFS2) gene. Although currently there is no treatment for this life-threatening disease, the molecular mechanisms underlying the pathogenesis of WS have been proposed. Interestingly, Alzheimer's disease (AD), an age-dependent neurodegenerative disease, shares some common mechanisms with WS. In this review, we focus on the function of WFS1 and WFS2 in the central nervous system as well as their implications in WS and AD. We also propose three future directions for elucidating the role of WFS1 and WFS2 in WS and AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Wolfram Syndrome , Alzheimer Disease/genetics , Central Nervous System , Humans , Membrane Proteins/genetics , Mutation , Wolfram Syndrome/genetics
6.
BMC Neurosci ; 21(1): 36, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32887544

ABSTRACT

BACKGROUND: Frontotemporal dementia (FTD) is the second leading cause of early onset dementia following Alzheimer's disease. It involves atrophy of the frontal and temporal regions of the brain affecting language, memory, and behavior. Transactive response DNA-binding protein 43 (TDP-43) pathology is found in most FTD and ALS cases. It plays a role in transcription, translation and serves as a shuttle between the nucleus and cytoplasm. Prior to its aggregation, TDP-43 exists as polyubiquitinated, hyperphosphorylated C-terminal fragments that correlate well with FTD disease progression. Because of the importance of TDP-43 in these diseases, reagents that can selectively recognize specific toxic TDP variants associated with onset and progression of FTD can be effective diagnostic and therapeutic tools. RESULTS: We utilized a novel atomic force microscopy (AFM) based biopanning protocol to isolate single chain variable fragments (scFvs) from a phage display library that selectively bind TDP variants present in human FTD but not cognitively normal age matched brain tissue. We then used the scFvs (FTD-TDP1 through 5) to probe post-mortem brain tissue and sera samples for the presence of FTD related TDP variants. The scFvs readily selected the FTD tissue and sera samples over age matched controls. The scFvs were used in immunohistochemical analysis of FTD and control brain slices where the reagents showed strong staining with TDP in FTD brain tissue slice. FTD-TDP1, FTD-TDP2, FTD-TDP4 and FTD-TDP5 all protected neuronal cells against FTD TDP induced toxicity suggesting potential therapeutic value. CONCLUSIONS: These results show existence of different disease specific TDP variants in FTD individuals. We have identified a panel of scFvs capable of recognizing these disease specific TDP variants in postmortem FTD tissue and sera samples over age matched controls and can thus serve as a biomarker tool.


Subject(s)
DNA-Binding Proteins/genetics , Frontotemporal Dementia/genetics , Immunoglobulin Fragments/isolation & purification , TDP-43 Proteinopathies/diagnosis , TDP-43 Proteinopathies/genetics , Antibody Specificity , Biomarkers , Biotinylation , Brain/immunology , DNA-Binding Proteins/chemistry , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/immunology , Genetic Variation , Humans , Immunoglobulin Fragments/chemistry , Immunohistochemistry , Microscopy, Atomic Force , Sensitivity and Specificity , TDP-43 Proteinopathies/immunology
7.
Neurobiol Aging ; 94: 7-14, 2020 10.
Article in English | MEDLINE | ID: mdl-32497877

ABSTRACT

Reagents that can selectively recognize specific toxic tau variants associated with onset and progression of Alzheimer's disease (AD) and other tauopathies can be effective diagnostic and therapeutic tools. We utilized a novel atomic force microscopy-based biopanning protocol to isolate antibody fragments (single chain variable fragments, scFvs) that selectively bind tau variants present in human AD but not cognitively normal age-matched brain tissue. We identified 6 scFvs [Alzheimer's disease tau (ADT)-1 through 6] that readily distinguished between AD and control tissue and sera samples. We utilized 3 of the scFvs (ADT-2, ADT-4, and ADT-6) to analyze longitudinal plasma samples from 50 human patients, 25 patients which converted to AD during the study and 25 that remained cognitively normal. All 3 scFvs could distinguish the AD from control samples with higher tau levels in apolipoprotein E3/3 AD cases compared to apolipoprotein E3/4. Immunohistochemical analyses of human AD brain slices indicated several but not all tau variants overlapping with phosphorylated tau staining. Several reagents also showed therapeutic potential, protecting neuronal cells against AD tau-induced toxicity.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Brain/metabolism , Immunoglobulin Fragments/isolation & purification , Single-Chain Antibodies/isolation & purification , tau Proteins/immunology , Aged , Aged, 80 and over , Alzheimer Disease/etiology , Biomarkers/blood , Biomarkers/metabolism , Female , Humans , Immunoglobulin Fragments/blood , Immunohistochemistry , Male , Phosphorylation , Single-Chain Antibodies/blood , tau Proteins/metabolism
8.
J Vis Exp ; (96)2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25742170

ABSTRACT

Because protein variants play critical roles in many diseases including TDP-43 in Amyotrophic Lateral Sclerosis (ALS), alpha-synuclein in Parkinson's disease and beta-amyloid and tau in Alzheimer's disease, it is critically important to develop morphology specific reagents that can selectively target these disease-specific protein variants to study the role of these variants in disease pathology and for potential diagnostic and therapeutic applications. We have developed novel atomic force microscopy (AFM) based biopanning techniques that enable isolation of reagents that selectively recognize disease-specific protein variants. There are two key phases involved in the process, the negative and positive panning phases. During the negative panning phase, phages that are reactive to off-target antigens are eliminated through multiple rounds of subtractive panning utilizing a series of carefully selected off-target antigens. A key feature in the negative panning phase is utilizing AFM imaging to monitor the process and confirm that all undesired phage particles are removed. For the positive panning phase, the target antigen of interest is fixed on a mica surface and bound phages are eluted and screened to identify phages that selectively bind the target antigen. The target protein variant does not need to be purified providing the appropriate negative panning controls have been used. Even target protein variants that are only present at very low concentrations in complex biological material can be utilized in the positive panning step. Through application of this technology, we acquired antibodies to protein variants of TDP-43 that are selectively found in human ALS brain tissue. We expect that this protocol should be applicable to generating reagents that selectively bind protein variants present in a wide variety of different biological processes and diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/immunology , Antibodies/chemistry , Antibodies/immunology , DNA-Binding Proteins/immunology , DNA-Binding Proteins/isolation & purification , Amyotrophic Lateral Sclerosis/metabolism , Antibodies/isolation & purification , Antibody Specificity , Antigens/immunology , Brain Chemistry , DNA-Binding Proteins/metabolism , Humans , Microscopy, Atomic Force/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...