Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 19(44): 8561-8576, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37905347

ABSTRACT

2-TIPS (two temperature induced phase separation) refers to the phase separation phenomenon observed in mixtures of active and passive particles which are modelled using scalar activity. The active particles are connected to a thermostat at high temperature while the passive particles are connected to the thermostat at low temperature and the relative temperature difference between "hot" and "cold" particles is taken as the measure of the activity χ of the non-equilibrium system. The study of such binary mixtures of hot and cold particles under various kinds of confinement is an important problem in many physical and biological processes. The nature and extent of phase separation are heavily influenced by the geometry of confinement, activity, and density of the non-equilibrium binary mixture. Investigating such 3D binary mixtures confined by parallel walls, we observe that the active and passive particles phase separate, but the extent of phase separation is reduced compared to bulk phase separation at high densities and enhanced at low densities. However, when the binary mixture of active and passive particles is confined inside a spherical cavity, the phase separation is radial for small radii of the confining sphere and the extent of phase separation is higher compared to their bulk counterparts. Confinement leads to interesting properties in the passive (cold) region like enhanced layering and high compression in the direction parallel to the confining wall. In 2D, both the bulk and confined systems of the binary mixture show a significant decrement in the extent of phase separation at higher densities. This observation is attributed to the trapping of active particles inside the passive cluster, which increases with density. Thus the 2D systems show structures more akin to dense-dilute phase co-existence, which is observed in motility induced phase separation in 2D active systems. The binary mixture constrained on the spherical surface also shows similar phase co-existence. Our analyses reveal that the coexistent densities observed in 2-TIPS on the spherical surface agree with the findings of previous studies on MIPS in active systems on a sphere.

2.
Phys Rev E ; 107(3-1): 034607, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37073042

ABSTRACT

We report phase separation in a mixture of "hot" and "cold" three-dimensional dumbbells which interact by Lennard-Jones potential. We also have studied the effect of asymmetry of dumbbells and the variation of ratio of "hot" and "cold" dumbbells on their phase separation. The ratio of the temperature difference between hot and cold dumbbells to the temperature of cold dumbbells is a measure of the activity χ of the system. From constant density simulations of symmetric dumbbells, we observe that the "hot" and "cold" dumbbells phase separate at higher activity ratio (χ>5.80) compared to that of a mixture of hot and cold Lennard-Jones monomers (χ>3.44). We find that, in the phase-separated system, the hot dumbbells have high effective volume and hence high entropy which is calculated by two-phase thermodynamic method. The high kinetic pressure of hot dumbbells forces the cold dumbbells to form dense clusters such that at the interface the high kinetic pressure of hot dumbbells is balanced by the virial pressure of cold dumbbells. We find that phase separation pushes the cluster of cold dumbbells to have solidlike ordering. Bond orientation order parameters reveal that the cold dumbbells form solidlike ordering consisting of predominantly face-centered cubic and hexagonal-close packing packing, but the individual dumbbells have random orientations. The simulation of the nonequilibrium system of symmetric dumbbells at different ratios of number of hot dumbbells to cold dumbbells reveals that the critical activity of phase separation decreases with increase in fraction of hot dumbbells. The simulation of equal mixture of hot and cold asymmetric dumbbells revealed that the critical activity of phase separation was independent of the asymmetry of dumbbells. We also observed that the clusters of cold asymmetric dumbbells showed both crystalline and noncrystalline order depending on the asymmetry of dumbbells.

SELECTION OF CITATIONS
SEARCH DETAIL
...