Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Res Sq ; 2023 May 23.
Article in English | MEDLINE | ID: mdl-37292654

ABSTRACT

Introduction: The measurement of intracerebral hemorrhage (ICH) volume is important for management, particularly in evaluating expansion on subsequent imaging. However manual volumetric analysis is time-consuming, especially in busy hospital settings. We aimed to use automated Rapid Hyperdensity software to accurately measure ICH volume across repeated imaging. Methods: We identified ICH cases, with repeat imaging conducted within 24 hours, from two randomized clinical trials where enrollment was not based on ICH volume. Scans were excluded if there was (1) severe CT artifacts, (2) prior neurosurgical procedures, (3) recent intravenous contrast, or (4) ICH < 1 ml. Manual ICH measurements were conducted by one neuroimaging expert using MIPAV software and compared to the performance of automated software. Results: 127 patients were included with median baseline ICH volume manually measured at 18.18 cc (IQR: 7.31 - 35.71) compared to automated detection of 18.93 cc (IQR: 7.55, 37.88). The two modalities were highly correlated (r = 0.994, p < 0.001). On repeat imaging, the median absolute difference in ICH volume was 0.68cc (IQR: -0.60-4.87) compared to automated detection at 0.68cc (IQR: -0.45-4.63). These absolute differences were also highly correlated (r = 0.941, p < 0.001), with the ability of the automated software to detect ICH expansion with a Sensitivity of 94.12% and Specificity 97.27%. Conclusion: In our proof-of-concept study, the automated software has high reliability in its ability to quickly determine IPH volume with high sensitivity and specificity and to detect expansion on subsequent imaging.

2.
Epilepsia ; 64(4): 875-887, 2023 04.
Article in English | MEDLINE | ID: mdl-36661376

ABSTRACT

OBJECTIVE: Transcranial direct current stimulation (tDCS) has been advocated for various neurological conditions, including epilepsy. A 1-4-mA cathodal current applied to the scalp over a seizure focus can reduce spikes and seizures. This series of four patients with focal status epilepticus is among the first case series to demonstrate benefit of tDCS in the critical care setting. METHODS: Patients in the intensive care unit were referred for tDCS treatment when focal status epilepticus or clinically relevant lateralized periodic discharges did not resolve with conventional antiseizure medications and anesthetics. Battery-powered direct cathodal current at 2 mA was delivered by an ActivaDose (Caputron) tDCS device via a saline-soaked sponge on the scalp over the seizure focus. Anode was on the contralateral forehead or shoulder. Treatment was for 30 min, repeated twice in a day, then again 1-4 times more over the next few days. RESULTS: Three females and one male, aged 34-68 years, were treated. Etiologies of status epilepticus were posterior reversible encephalopathy syndrome in association with immunosuppressants for a liver transplant, perinatal hypoxic-ischemic injury, a prior cardioembolic parietal stroke, and central nervous system lupus. tDCS led to significant reduction of interictal spikes (.78 to .38/s, p < .0001) in three cases and electrographic seizures (3.83/h to 0/h, p < .001) in two cases. Medication reductions were enabled in all cases subsequent to tDCS. The only side effect of tDCS was transient erythema under the sponge in one case. Two patients died of causes unrelated to tDCS, one was discharged to a nursing home, and one became fully responsive as seizures were controlled with tDCS. SIGNIFICANCE: Spikes and electrographic seizure frequency significantly improved within 1 day of tDCS. Results are potentially confounded by multiple ongoing changes in medications and treatments. These results might encourage further investigation of tDCS in the critical care setting, but verification by controlled studies will be required.


Subject(s)
Epilepsia Partialis Continua , Posterior Leukoencephalopathy Syndrome , Status Epilepticus , Transcranial Direct Current Stimulation , Female , Humans , Male , Transcranial Direct Current Stimulation/adverse effects , Transcranial Direct Current Stimulation/methods , Patient Discharge , Posterior Leukoencephalopathy Syndrome/etiology , Electroencephalography , Seizures/etiology , Status Epilepticus/therapy , Status Epilepticus/etiology , Critical Care
3.
Neurocrit Care ; 37(1): 190-199, 2022 08.
Article in English | MEDLINE | ID: mdl-35314970

ABSTRACT

BACKGROUND: Predictions of functional outcome in neurocritical care (NCC) patients impact care decisions. This study compared the predictive values (PVs) of good and poor functional outcome among health care providers with and without NCC training. METHODS: Consecutive patients who were intubated for  ≥ 72 h with primary neurological illness or neurological complications were prospectively enrolled and followed for 6-month functional outcome. Medical intensive care unit (MICU) attendings, NCC attendings, residents (RES), and nurses (RN) predicted 6-month functional outcome on the modified Rankin scale (mRS). The primary objective was to compare these four groups' PVs of a good (mRS score 0-3) and a poor (mRS score 4-6) outcome prediction. RESULTS: Two hundred eighty-nine patients were enrolled. One hundred seventy-six had mRS scores predicted by a provider from each group and were included in the primary outcome analysis. At 6 months, 54 (31%) patients had good outcome and 122 (69%) had poor outcome. Compared with other providers, NCC attendings expected better outcomes (p < 0.001). Consequently, the PV of a poor outcome prediction by NCC attendings was higher (96% [95% confidence interval [CI] 89-99%]) than that by MICU attendings (88% [95% CI 80-93%]), RES (82% [95% CI 74-88%]), and RN (85% [95% CI 77-91%]) (p = 0.047, 0.002, and 0.012, respectively). When patients who had withdrawal of life-sustaining therapy (n = 67) were excluded, NCC attendings remained better at predicting poor outcome (NCC 90% [95% CI 75-97%] vs. MICU 73% [95% CI 59-84%], p = 0.064). The PV of a good outcome prediction was similar among groups (MICU 65% [95% CI 52-76%], NCC 63% [95% CI 51-73%], RES 71% [95% CI 55-84%], and RN 64% [95% CI 50-76%]). CONCLUSIONS: Neurointensivists expected better outcomes than other providers and were better at predicting poor functional outcomes. The PV of a good outcome prediction was modest among all providers.


Subject(s)
Intensive Care Units , Humans , Prognosis
4.
J Stroke Cerebrovasc Dis ; 30(12): 106118, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34560378

ABSTRACT

BACKGROUND AND OBJECTIVES: RCVS (Reversible Cerebral Vasoconstrictive Syndrome) is a condition associated with vasoactive agents that alter endothelial function. There is growing evidence that endothelial inflammation contributes to cerebrovascular disease in patients with coronavirus disease 2019 (COVID-19). In our study, we describe the clinical features, risk factors, and outcomes of RCVS in a multicenter case series of patients with COVID-19. MATERIALS AND METHODS: Multicenter retrospective case series. We collected clinical characteristics, imaging, and outcomes of patients with RCVS and COVID-19 identified at each participating site. RESULTS: Ten patients were identified, 7 women, ages 21 - 62 years. Risk factors included use of vasoconstrictive agents in 7 and history of migraine in 2. Presenting symptoms included thunderclap headache in 5 patients with recurrent headaches in 4. Eight were hypertensive on arrival to the hospital. Symptoms of COVID-19 included fever in 2, respiratory symptoms in 8, and gastrointestinal symptoms in 1. One patient did not have systemic COVID-19 symptoms. MRI showed subarachnoid hemorrhage in 3 cases, intraparenchymal hemorrhage in 2, acute ischemic stroke in 4, FLAIR hyperintensities in 2, and no abnormalities in 1 case. Neurovascular imaging showed focal segment irregularity and narrowing concerning for vasospasm of the left MCA in 4 cases and diffuse, multifocal narrowing of the intracranial vasculature in 6 cases. Outcomes varied, with 2 deaths, 2 remaining in the ICU, and 6 surviving to discharge with modified Rankin scale (mRS) scores of 0 (n=3), 2 (n=2), and 3 (n=1). CONCLUSIONS: Our series suggests that patients with COVID-19 may be at risk for RCVS, particularly in the setting of additional risk factors such as exposure to vasoactive agents. There was variability in the symptoms and severity of COVID-19, clinical characteristics, abnormalities on imaging, and mRS scores. However, a larger study is needed to validate a causal relationship between RCVS and COVID-19.


Subject(s)
COVID-19/complications , Cerebral Arteries/physiopathology , Cerebrovascular Circulation , Vasoconstriction , Vasospasm, Intracranial/etiology , Adult , COVID-19/diagnosis , COVID-19/therapy , Cerebral Arteries/diagnostic imaging , Female , Humans , Male , Middle Aged , Neuroimaging , Retrospective Studies , Risk Factors , Severity of Illness Index , Syndrome , Time Factors , Treatment Outcome , United States , Vasospasm, Intracranial/diagnostic imaging , Vasospasm, Intracranial/physiopathology , Vasospasm, Intracranial/therapy , Young Adult
5.
Stroke ; 52(9): 3054-3062, 2021 08.
Article in English | MEDLINE | ID: mdl-34320814

ABSTRACT

The modified Rankin Scale (mRS), a 7-level, clinician-reported, measure of global disability, is the most widely employed outcome scale in acute stroke trials. The scale's original development preceded the advent of modern clinimetrics, but substantial subsequent work has been performed to enable the mRS to meet robust contemporary scale standards. Prior research and consensus recommendations have focused on modernizing 2 aspects of the mRS: operationalized assignment of scale scores and statistical analysis of scale distributions. Another important characteristic of the mRS still requiring elaboration and specification to contemporary clinimetric standards is the Naming of scale outcomes. Recent clinical trials have used a bewildering variety, often mutually contradictory, of rubrics to describe scale states. Understanding of the meaning of mRS outcomes by clinicians, patients, and other clinical trial stakeholders would be greatly enhanced by use of a harmonized, uniform set of labels for the distinctive mRS outcomes that would be used consistently across trials. This statement advances such recommended rubrics, developed by the Stroke Therapy Academic Industry Roundtable collaboration using an iterative, mixed-methods process. Specific guidance is provided for health state terms (eg, Symptomatic but Nondisabled for mRS score 1; requires constant care for mRS score 5) and valence terms (eg, excellent for mRS score 1; very poor for mRS score 5) to employ for 23 distinct numeric mRS outcomes, including: all individual 7 mRS levels; all 12 positive and negative dichotomized mRS ranges, positive and negative sliding dichotomies; and utility-weighted analysis of the mRS.


Subject(s)
Disability Evaluation , Outcome Assessment, Health Care/standards , Stroke , Terminology as Topic , Humans
6.
Article in English | MEDLINE | ID: mdl-32820130

ABSTRACT

SUMMARY: We report the case of a 76-year-old male with a remote history of papillary thyroid cancer who developed severe paroxysmal headaches in the setting of episodic hypertension. Brain imaging revealed multiple lesions, initially of inconclusive etiology, but suspicious for metastatic foci. A search for the primary malignancy revealed an adrenal tumor, and biochemical testing confirmed the diagnosis of a norepinephrine-secreting pheochromocytoma. Serial imaging demonstrated multiple cerebral infarctions of varying ages, evidence of vessel narrowing and irregularities in the anterior and posterior circulations, and hypoperfusion in watershed areas. An exhaustive work-up for other etiologies of stroke including thromboembolic causes or vasculitis was unremarkable. There was resolution of symptoms, absence of new infarctions, and improvement in vessel caliber after adequate alpha-adrenergic receptor blockade for the management of pheochromocytoma. This clinicoradiologic constellation of findings suggested that the etiology of the multiple infarctions was reversible cerebral vasoconstriction syndrome (RCVS). Pheochromocytoma remains a poorly recognized cause of RCVS. Unexplained multifocal cerebral infarctions in the setting of severe hypertension should prompt the consideration of a vasoactive tumor as the driver of cerebrovascular dysfunction. A missed or delayed diagnosis has the potential for serious neurologic morbidity for an otherwise treatable condition. LEARNING POINTS: The constellation of multifocal watershed cerebral infarctions of uncertain etiology in a patient with malignant hypertension should trigger the consideration of undiagnosed catecholamine secreting tumors, such as pheochromocytomas and paragangliomas. Reversible cerebral vasoconstriction syndrome is a serious but reversible cerebrovascular manifestation of pheochromocytomas that may lead to strokes (ischemic and hemorrhagic), seizures, and cerebral edema. Alpha-adrenergic receptor blockade can reverse cerebral vasoconstriction and prevent further cerebral ischemia and infarctions. Early diagnosis of catecholamine secreting tumors has the potential for reducing neurologic morbidity and mortality in patients presenting with cerebrovascular complications.

7.
Neurology ; 94(16): e1684-e1692, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32269116

ABSTRACT

OBJECTIVE: To validate quantitative diffusion-weighted imaging (DWI) MRI thresholds that correlate with poor outcome in comatose cardiac arrest survivors, we conducted a clinician-blinded study and prospectively obtained MRIs from comatose patients after cardiac arrest. METHODS: Consecutive comatose post-cardiac arrest adult patients were prospectively enrolled. MRIs obtained within 7 days after arrest were evaluated. The clinical team was blinded to the DWI MRI results and followed a prescribed prognostication algorithm. Apparent diffusion coefficient (ADC) values and thresholds differentiating good and poor outcome were analyzed. Poor outcome was defined as a Glasgow Outcome Scale score of ≤2 at 6 months after arrest. RESULTS: Ninety-seven patients were included, and 75 patients (77%) had MRIs. In 51 patients with MRI completed by postarrest day 7, the prespecified threshold of >10% of brain tissue with an ADC <650 ×10-6 mm2/s was highly predictive for poor outcome with a sensitivity of 0.63 (95% confidence interval [CI] 0.42-0.80), a specificity of 0.96 (95% CI 0.77-0.998), and a positive predictive value (PPV) of 0.94 (95% CI 0.71-0.997). The mean whole-brain ADC was higher among patients with good outcomes. Receiver operating characteristic curve analysis showed that ADC <650 ×10-6 mm2/s had an area under the curve of 0.79 (95% CI 0.65-0.93, p < 0.001). Quantitative DWI MRI data improved prognostication of both good and poor outcomes. CONCLUSIONS: This prospective, clinician-blinded study validates previous research showing that an ADC <650 ×10-6 mm2/s in >10% of brain tissue in an MRI obtained by postarrest day 7 is highly specific for poor outcome in comatose patients after cardiac arrest.


Subject(s)
Brain/diagnostic imaging , Coma/diagnostic imaging , Heart Arrest/therapy , Hypoxia-Ischemia, Brain/diagnostic imaging , Post-Cardiac Arrest Syndrome/diagnostic imaging , Adult , Aged , Coma/etiology , Diffusion Magnetic Resonance Imaging , Female , Glasgow Outcome Scale , Heart Arrest/complications , Humans , Hypoxia-Ischemia, Brain/etiology , Male , Middle Aged , Post-Cardiac Arrest Syndrome/complications , Prognosis , Prospective Studies
8.
Neurocrit Care ; 32(3): 647-666, 2020 06.
Article in English | MEDLINE | ID: mdl-32227294

ABSTRACT

BACKGROUND: Acute treatment of cerebral edema and elevated intracranial pressure is a common issue in patients with neurological injury. Practical recommendations regarding selection and monitoring of therapies for initial management of cerebral edema for optimal efficacy and safety are generally lacking. This guideline evaluates the role of hyperosmolar agents (mannitol, HTS), corticosteroids, and selected non-pharmacologic therapies in the acute treatment of cerebral edema. Clinicians must be able to select appropriate therapies for initial cerebral edema management based on available evidence while balancing efficacy and safety. METHODS: The Neurocritical Care Society recruited experts in neurocritical care, nursing, and pharmacy to create a panel in 2017. The group generated 16 clinical questions related to initial management of cerebral edema in various neurological insults using the PICO format. A research librarian executed a comprehensive literature search through July 2018. The panel screened the identified articles for inclusion related to each specific PICO question and abstracted necessary information for pertinent publications. The panel used GRADE methodology to categorize the quality of evidence as high, moderate, low, or very low based on their confidence that the findings of each publication approximate the true effect of the therapy. RESULTS: The panel generated recommendations regarding initial management of cerebral edema in neurocritical care patients with subarachnoid hemorrhage, traumatic brain injury, acute ischemic stroke, intracerebral hemorrhage, bacterial meningitis, and hepatic encephalopathy. CONCLUSION: The available evidence suggests hyperosmolar therapy may be helpful in reducing ICP elevations or cerebral edema in patients with SAH, TBI, AIS, ICH, and HE, although neurological outcomes do not appear to be affected. Corticosteroids appear to be helpful in reducing cerebral edema in patients with bacterial meningitis, but not ICH. Differences in therapeutic response and safety may exist between HTS and mannitol. The use of these agents in these critical clinical situations merits close monitoring for adverse effects. There is a dire need for high-quality research to better inform clinicians of the best options for individualized care of patients with cerebral edema.


Subject(s)
Brain Edema/therapy , Diuretics, Osmotic/therapeutic use , Glucocorticoids/therapeutic use , Intracranial Hypertension/therapy , Mannitol/therapeutic use , Saline Solution, Hypertonic/therapeutic use , Brain Edema/etiology , Brain Injuries, Traumatic/complications , Cerebral Hemorrhage/complications , Cerebrospinal Fluid Shunts/methods , Critical Care , Emergency Medical Services , Hepatic Encephalopathy/complications , Humans , Intracranial Hypertension/etiology , Ischemic Stroke/complications , Meningitis, Bacterial/complications , Patient Positioning/methods , Societies, Medical , Subarachnoid Hemorrhage/complications
10.
Lancet Neurol ; 17(10): 885-894, 2018 10.
Article in English | MEDLINE | ID: mdl-30120039

ABSTRACT

BACKGROUND: Intracerebral haemorrhage growth is associated with poor clinical outcome and is a therapeutic target for improving outcome. We aimed to determine the absolute risk and predictors of intracerebral haemorrhage growth, develop and validate prediction models, and evaluate the added value of CT angiography. METHODS: In a systematic review of OVID MEDLINE-with additional hand-searching of relevant studies' bibliographies- from Jan 1, 1970, to Dec 31, 2015, we identified observational cohorts and randomised trials with repeat scanning protocols that included at least ten patients with acute intracerebral haemorrhage. We sought individual patient-level data from corresponding authors for patients aged 18 years or older with data available from brain imaging initially done 0·5-24 h and repeated fewer than 6 days after symptom onset, who had baseline intracerebral haemorrhage volume of less than 150 mL, and did not undergo acute treatment that might reduce intracerebral haemorrhage volume. We estimated the absolute risk and predictors of the primary outcome of intracerebral haemorrhage growth (defined as >6 mL increase in intracerebral haemorrhage volume on repeat imaging) using multivariable logistic regression models in development and validation cohorts in four subgroups of patients, using a hierarchical approach: patients not taking anticoagulant therapy at intracerebral haemorrhage onset (who constituted the largest subgroup), patients taking anticoagulant therapy at intracerebral haemorrhage onset, patients from cohorts that included at least some patients taking anticoagulant therapy at intracerebral haemorrhage onset, and patients for whom both information about anticoagulant therapy at intracerebral haemorrhage onset and spot sign on acute CT angiography were known. FINDINGS: Of 4191 studies identified, 77 were eligible for inclusion. Overall, 36 (47%) cohorts provided data on 5435 eligible patients. 5076 of these patients were not taking anticoagulant therapy at symptom onset (median age 67 years, IQR 56-76), of whom 1009 (20%) had intracerebral haemorrhage growth. Multivariable models of patients with data on antiplatelet therapy use, data on anticoagulant therapy use, and assessment of CT angiography spot sign at symptom onset showed that time from symptom onset to baseline imaging (odds ratio 0·50, 95% CI 0·36-0·70; p<0·0001), intracerebral haemorrhage volume on baseline imaging (7·18, 4·46-11·60; p<0·0001), antiplatelet use (1·68, 1·06-2·66; p=0·026), and anticoagulant use (3·48, 1·96-6·16; p<0·0001) were independent predictors of intracerebral haemorrhage growth (C-index 0·78, 95% CI 0·75-0·82). Addition of CT angiography spot sign (odds ratio 4·46, 95% CI 2·95-6·75; p<0·0001) to the model increased the C-index by 0·05 (95% CI 0·03-0·07). INTERPRETATION: In this large patient-level meta-analysis, models using four or five predictors had acceptable to good discrimination. These models could inform the location and frequency of observations on patients in clinical practice, explain treatment effects in prior randomised trials, and guide the design of future trials. FUNDING: UK Medical Research Council and British Heart Foundation.


Subject(s)
Cerebral Hemorrhage , Disease Progression , Outcome Assessment, Health Care/methods , Risk Assessment/methods , Aged , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/pathology , Humans , Middle Aged
11.
Neuroradiology ; 59(9): 839-844, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28730267

ABSTRACT

PURPOSE: The CT angiography (CTA) spot sign is a strong predictor of hematoma expansion in intracerebral hemorrhage (ICH). However, CTA parameters vary widely across centers and may negatively impact spot sign accuracy in predicting ICH expansion. We developed a CT iodine calibration phantom that was scanned at different institutions in a large multicenter ICH clinical trial to determine the effect of image standardization on spot sign detection and performance. METHODS: A custom phantom containing known concentrations of iodine was designed and scanned using the stroke CT protocol at each institution. Custom software was developed to read the CT volume datasets and calculate the Hounsfield unit as a function of iodine concentration for each phantom scan. CTA images obtained within 8 h from symptom onset were analyzed by two trained readers comparing the calibrated vs. uncalibrated density cutoffs for spot sign identification. ICH expansion was defined as hematoma volume growth >33%. RESULTS: A total of 90 subjects qualified for the study, of whom 17/83 (20.5%) experienced ICH expansion. The number of spot sign positive scans was higher in the calibrated analysis (67.8 vs 38.9% p < 0.001). All spot signs identified in the non-calibrated analysis remained positive after calibration. Calibrated CTA images had higher sensitivity for ICH expansion (76 vs 52%) but inferior specificity (35 vs 63%) compared with uncalibrated images. CONCLUSION: Normalization of CTA images using phantom data is a feasible strategy to obtain consistent image quantification for spot sign analysis across different sites and may improve sensitivity for identification of ICH expansion.


Subject(s)
Cerebral Hemorrhage/diagnostic imaging , Computed Tomography Angiography/standards , Hematoma/diagnostic imaging , Calibration , Humans , Iodine , Phantoms, Imaging , Sensitivity and Specificity , Software
12.
Neurocrit Care ; 23 Suppl 2: S143-54, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26438466

ABSTRACT

Traumatic Brain Injury (TBI) was chosen as an Emergency Neurological Life Support topic due to its frequency, the impact of early intervention on outcomes for patients with TBI, and the need for an organized approach to the care of such patients within the emergency setting. This protocol was designed to enumerate the practice steps that should be considered within the first critical hour of neurological injury.


Subject(s)
Brain Injuries/therapy , Emergency Treatment/methods , Life Support Care/methods , Neurology/methods , Humans
13.
J Am Heart Assoc ; 2(4): e000090, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23913508

ABSTRACT

BACKGROUND: The purpose of this study was to define the incidence, imaging characteristics, natural history, and prognostic implication of corticospinal tract Wallerian degeneration (CST-WD) in spontaneous intracerebral hemorrhage (ICH) using serial MR imaging. METHODS AND RESULTS: Consecutive ICH patients with supratentorial ICH prospectively underwent serial MRIs at 2, 7, 14, and 21 days. MRIs were analyzed by independent raters for the presence and topographical distribution of CST-WD on diffusion-weighted imaging (DWI). Baseline demographics, hematoma characteristics, ICH score, and admission National Institute of Health Stroke Score (NIHSS) were systematically recorded. Functional outcome at 3 months was assessed by the modified Rankin Scale (mRS) and the motor-NIHSS. Twenty-seven patients underwent 93 MRIs; 88 of these were serially obtained in the first month. In 13 patients (48%), all with deep ICH, CST-WD changes were observed after a median of 7 days (interquartile range, 7 to 8) as reduced diffusion on DWI and progressed rostrocaudally along the CST. CST-WD changes evolved into T2-hyperintense areas after a median of 11 days (interquartile range, 6 to 14) and became atrophic on MRIs obtained after 3 months. In univariate analyses, the presence of CST-WD was associated with poor functional outcome (ie, mRS 4 to 6; P=0.046) and worse motor-NIHSS (5 versus 1, P=0.001) at 3 months. CONCLUSIONS: Wallerian degeneration along the CST is common in spontaneous supratentorial ICH, particularly in deep ICH. It can be detected 1 week after ICH on DWI and progresses rostrocaudally along the CST over time. The presence of CST-WD is associated with poor motor and functional recovery after ICH.


Subject(s)
Cerebral Hemorrhage/pathology , Pyramidal Tracts/pathology , Wallerian Degeneration/pathology , Aged , California/epidemiology , Cerebral Hemorrhage/epidemiology , Cerebral Hemorrhage/physiopathology , Cerebral Hemorrhage/therapy , Diffusion Magnetic Resonance Imaging , Disability Evaluation , Disease Progression , Female , Hematoma/pathology , Humans , Incidence , Male , Middle Aged , Motor Activity , Predictive Value of Tests , Prognosis , Prospective Studies , Recovery of Function , Severity of Illness Index , Time Factors , Wallerian Degeneration/physiopathology
14.
Neurocrit Care ; 19(2): 161-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23839710

ABSTRACT

BACKGROUND: In comatose post-cardiac arrest patients, a serum neuron-specific enolase (NSE) level of >33 µg/L within 72 h was identified as a reliable marker for poor outcome in a large Dutch study (PROPAC), and this level was subsequently adopted in an American Academy of Neurology practice parameter. Later studies reported that NSE >33 µg/L is not a reliable predictor of poor prognosis. To test whether different clinical laboratories contribute to this variability, we compared NSE levels from the laboratory used in the PROPAC study (DLM-Nijmegen) with those of our hospital's laboratory (ARUP) using paired blood samples. METHODS: We prospectively enrolled cardiac arrest patients who remained comatose after resuscitation. During the first 3 days, paired blood samples for serum NSE were drawn at a median of 10 min apart. After standard preparation for each lab, one sample was sent to ARUP laboratories and the other to DLM-Nijmegen. RESULTS: Fifty-four paired serum samples from 33 patients were included. Although the serum NSE measurements correlated well between laboratories (R = 0.91), the results from ARUP were approximately 30% lower than those from DLM-Nijmegen. Therapeutic hypothermia did not affect this relationship. Two patients had favorable outcomes after hypothermia despite NSE levels measured by DLM-Nijmegen as >33 µg/L. CONCLUSIONS: Absolute serum NSE levels of comatose cardiac arrest patients differ between laboratories. Any specific absolute cut-off levels proposed to prognosticate poor outcome should not be used without detailed data on how neurologic outcomes correspond to a particular laboratory's method, and even then only in conjunction with other prognostic variables.


Subject(s)
Chemistry, Clinical/standards , Clinical Laboratory Services/standards , Coma/metabolism , Heart Arrest/metabolism , Laboratories, Hospital/standards , Phosphopyruvate Hydratase/blood , Biomarkers/blood , Cohort Studies , Coma/mortality , Heart Arrest/mortality , Humans , Hypothermia, Induced , Prognosis , Prospective Studies , Reproducibility of Results , Survival Rate
16.
J Am Heart Assoc ; 2(3): e000161, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23709564

ABSTRACT

BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) is associated with blood-brain barrier (BBB) injury, which is a poorly understood factor in ICH pathogenesis, potentially contributing to edema formation and perihematomal tissue injury. We aimed to assess and quantify BBB permeability following human spontaneous ICH using dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). We also investigated whether hematoma size or location affected the amount of BBB leakage. METHODS AND RESULTS: Twenty-five prospectively enrolled patients from the Diagnostic Accuracy of MRI in Spontaneous intracerebral Hemorrhage (DASH) study were examined using DCE MRI at 1 week after symptom onset. Contrast agent dynamics in the brain tissue and general tracer kinetic modeling were used to estimate the forward leakage rate (K(trans)) in regions of interest (ROI) in and surrounding the hematoma and in contralateral mirror-image locations (control ROI). In all patients BBB permeability was significantly increased in the brain tissue immediately adjacent to the hematoma, that is, the hematoma rim, compared to the contralateral mirror ROI (P<0.0001). Large hematomas (>30 mL) had higher K(trans) values than small hematomas (P<0.005). K(trans) values of lobar hemorrhages were significantly higher than the K(trans) values of deep hemorrhages (P<0.005), independent of hematoma volume. Higher K(trans) values were associated with larger edema volumes. CONCLUSIONS: BBB leakage in the brain tissue immediately bordering the hematoma can be measured and quantified by DCE MRI in human ICH. BBB leakage at 1 week is greater in larger hematomas as well as in hematomas in lobar locations and is associated with larger edema volumes.


Subject(s)
Blood-Brain Barrier/injuries , Blood-Brain Barrier/pathology , Cerebral Hemorrhage/pathology , Hematoma/pathology , Magnetic Resonance Imaging , Acute Disease , Cerebral Hemorrhage/etiology , Female , Hematoma/etiology , Humans , Male , Middle Aged , Prospective Studies
17.
J Neurosurg ; 117(3): 615-28, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22725982

ABSTRACT

Intracranial hypotension is a disorder of CSF hypovolemia due to iatrogenic or spontaneous spinal CSF leakage. Rarely, positional headaches may progress to coma, with frequent misdiagnosis. The authors review reported cases of verified intracranial hypotension-associated coma, including 3 previously unpublished cases, totaling 29. Most patients presented with headache prior to neurological deterioration, with positional symptoms elicited in almost half. Eight patients had recently undergone a spinal procedure such as lumbar drainage. Diagnostic workup almost always began with a head CT scan. Subdural collections were present in 86%; however, intracranial hypotension was frequently unrecognized as the underlying cause. Twelve patients underwent one or more procedures to evacuate the collections, sometimes with transiently improved mental status. However, no patient experienced lasting neurological improvement after subdural fluid evacuation alone, and some deteriorated further. Intracranial hypotension was diagnosed in most patients via MRI studies, which were often obtained due to failure to improve after subdural hematoma (SDH) evacuation. Once the diagnosis of intracranial hypotension was made, placement of epidural blood patches was curative in 85% of patients. Twenty-seven patients (93%) experienced favorable outcomes after diagnosis and treatment; 1 patient died, and 1 patient had a morbid outcome secondary to duret hemorrhages. The literature review revealed that numerous additional patients with clinical histories consistent with intracranial hypotension but no radiological confirmation developed SDH following a spinal procedure. Several such patients experienced poor outcomes, and there were multiple deaths. To facilitate recognition of this treatable but potentially life-threatening condition, the authors propose criteria that should prompt intracranial hypotension workup in the comatose patient and present a stepwise management algorithm to guide the appropriate diagnosis and treatment of these patients.


Subject(s)
Coma/etiology , Disease Management , Intracranial Hypotension/complications , Intracranial Hypotension/diagnosis , Adult , Algorithms , Female , Headache/etiology , Humans , Intracranial Hypotension/therapy , Male , Middle Aged , Posture , Treatment Outcome
18.
Stroke Res Treat ; 2011: 690506, 2011.
Article in English | MEDLINE | ID: mdl-21822470

ABSTRACT

Introduction. We sought to compare the performance of endovascular cooling to conventional surface cooling after cardiac arrest. Methods. Patients in coma following cardiopulmonary resuscitation were cooled with an endovascular cooling catheter or with ice bags and cold-water-circulating cooling blankets to a target temperature of 32.0-34.0°C for 24 hours. Performance of cooling techniques was compared by (1) number of hourly recordings in target temperature range, (2) time elapsed from the written order to initiate cooling and target temperature, and (3) adverse events during the first week. Results. Median time in target temperature range was 19 hours (interquartile range (IQR), 16-20) in the endovascular group versus. 10 hours (IQR, 7-15) in the surface group (P = .001). Median time to target temperature was 4 (IQR, 2.8-6.2) and 4.5 (IQR, 3-6.5) hours, respectively (P = .67). Adverse events were similar. Conclusion. Endovascular cooling maintains target temperatures better than conventional surface cooling.

19.
Stroke ; 42(1): 73-80, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21164136

ABSTRACT

BACKGROUND AND PURPOSE: knowledge on the natural history and clinical impact of perihematomal edema (PHE) associated with intracerebral hemorrhage is limited. We aimed to define the time course, predictors, and clinical significance of PHE measured by serial magnetic resonance imaging. METHODS: patients with primary supratentorial intracerebral hemorrhage ≥ 5 cm(3) underwent serial MRIs at prespecified intervals during the first month. Hematoma (H(v)) and PHE (E(v)) volumes were measured on fluid-attenuated inversion recovery images. Relative PHE was defined as E(v)/H(v). Neurologic assessments were performed at admission and with each MRI. Barthel Index, modified Rankin scale, and extended Glasgow Outcome scale scores were assigned at 3 months. RESULTS: twenty-seven patients with 88 MRIs were prospectively included. Median H(v) and E(v) on the first MRI were 39 and 46 cm(3), respectively. Median peak absolute E(v) was 88 cm(3). Larger hematomas produced a larger absolute E(v) (r(2)=0.6) and a smaller relative PHE (r(2)=0.7). Edema volume growth was fastest in the first 2 days but continued until 12 ± 3 days. In multivariate analysis, a higher admission hematocrit was associated with a greater delay in peak PHE (P=0.06). Higher admission partial thromboplastin time was associated with higher peak rPHE (P=0.02). Edema volume growth was correlated with a decline in neurologic status at 48 hours (81 vs 43 cm(3), P=0.03) but not with 3-month functional outcome. CONCLUSIONS: PHE volume measured by MRI increases most rapidly in the first 2 days after symptom onset and peaks toward the end of the second week. The timing and magnitude of PHE volume are associated with hematologic factors. Its clinical significance deserves further study.


Subject(s)
Brain Edema , Cerebral Hemorrhage , Magnetic Resonance Imaging , Aged , Brain Edema/diagnostic imaging , Brain Edema/etiology , Brain Edema/physiopathology , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/physiopathology , Female , Humans , Male , Middle Aged , Radiography
20.
Stroke ; 41(11): 2681-3, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20947849

ABSTRACT

BACKGROUND AND PURPOSE: The pathophysiology of the presumed perihematomal edema immediately surrounding an acute intracerebral hemorrhage is poorly understood, and its composition may influence clinical outcome. Method-Twenty-three patients from the Diagnostic Accuracy of MRI in Spontaneous intracerebral Hemorrhage (DASH) study were prospectively enrolled and studied with MRI. Perfusion-weighted imaging, diffusion-weighted imaging, and fluid-attenuated inversion recovery sequences were coregistered. TMax (the time when the residue function reaches its maximum) and apparent diffusion coefficient values in the presumed perihematomal edema regions of interest were compared with contralateral mirror and remote ipsilateral hemispheric regions of interest. RESULTS: Compared with mirror and ipsilateral hemispheric regions of interest, TMax (the time when the residue function reaches its maximum) and apparent diffusion coefficient were consistently increased in the presumed perihematomal edema. Two thirds of the patients also exhibited patchy regions of restricted diffusion in the presumed perihematomal edema. CONCLUSIONS: The MRI profile of the presumed perihematomal edema in acute intracerebral hemorrhage exhibits delayed perfusion and increased diffusivity mixed with areas of reduced diffusion.


Subject(s)
Brain Edema/pathology , Cerebral Hemorrhage/pathology , Diffusion Magnetic Resonance Imaging , Hematoma/pathology , Adult , Aged , Disease Progression , Humans , Middle Aged , Prospective Studies , Retrospective Studies , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...