Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 170: 105716, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35961486

ABSTRACT

INTRODUCTION: Pseudomonas aeruginosa (PA) possesses several virulence genes that enable them to evade the immune system and to cause injury in the host tissue. However, the number of studies that characterized the virulence genes profile in PA sepsis is limited. AIM: The main objective of this study was to identify and characterize virulence genes in PA causing sepsis, as well as investigate the relationship between virulence genes, antimicrobial susceptibility patterns, and infection outcomes. METHODOLOGY: A prospective study, conducted between October 2020-October 2021, isolates were recovered from blood samples and identified using standard microbiological procedures. Phenotypic techniques were used to screen for capsule, siderophore production, biofilm formation, serum resistance, hemolysin production, and protease. Molecular techniques were performed to screen for alginate D (alg D), exoenzyme S (Exo S), exotoxin A (tox A), phospholipase H (plc H), phospholipase N (plc N), and elastase B (las B). Kirby-Bauer disc diffusion method was used to determine the antimicrobial susceptibility pattern of isolates, which was then interpreted according to the CLSI 2021 guidelines. RESULTS: Out of the n = 215 Gram-negative bacteria recovered from sepsis patients during our study, n = 20 were Pseudomonas aeruginosa. PA isolates were susceptible to all antibiotics tested except for 3 of the isolates that were resistant to gentamycin, 2 to imipenem, and 1 to ceftazidime, cefepime, meropenem, tobramycin, and amikacin. The most prevalent virulence genes present were capsule (100%), siderophore production (100%), alg D (100%), Las B (100%), and Tox A (100%). CONCLUSION: Our study found that PA causing sepsis harbours a high level of virulence genes. However, the high presence of virulence factors was not statistically associated with antimicrobial susceptibility, as most isolates in our study were susceptible to the antibiotics tested.


Subject(s)
Pseudomonas Infections , Sepsis , Anti-Bacterial Agents/pharmacology , Humans , Microbial Sensitivity Tests , Phospholipases , Prospective Studies , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa , Siderophores , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...