Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychopharmacology ; 48(12): 1742-1751, 2023 11.
Article in English | MEDLINE | ID: mdl-37349472

ABSTRACT

Glutamatergic NMDA receptors (NMDAR) are critical for cognitive function, and their reduced expression leads to intellectual disability. Since subpopulations of NMDARs exist in distinct subcellular environments, their functioning may be unevenly vulnerable to genetic disruption. Here, we investigate synaptic and extrasynaptic NMDARs on the major output neurons of the prefrontal cortex in mice deficient for the obligate NMDAR subunit encoded by Grin1 and wild-type littermates. With whole-cell recording in brain slices, we find that single, low-intensity stimuli elicit surprisingly-similar glutamatergic synaptic currents in both genotypes. By contrast, clear genotype differences emerge with manipulations that recruit extrasynaptic NMDARs, including stronger, repetitive, or pharmacological stimulation. These results reveal a disproportionate functional deficit of extrasynaptic NMDARs compared to their synaptic counterparts. To probe the repercussions of this deficit, we examine an NMDAR-dependent phenomenon considered a building block of cognitive integration, basal dendrite plateau potentials. Since we find this phenomenon is readily evoked in wild-type but not in Grin1-deficient mice, we ask whether plateau potentials can be restored by an adult intervention to increase Grin1 expression. This genetic manipulation, previously shown to restore cognitive performance in adulthood, successfully rescues electrically-evoked basal dendrite plateau potentials after a lifetime of NMDAR compromise. Taken together, our work demonstrates NMDAR subpopulations are not uniformly vulnerable to the genetic disruption of their obligate subunit. Furthermore, the window for functional rescue of the more-sensitive integrative NMDARs remains open into adulthood.


Subject(s)
Neurons , Receptors, N-Methyl-D-Aspartate , Mice , Animals , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Neurons/metabolism , Prefrontal Cortex/metabolism , Synapses/metabolism
2.
iScience ; 26(2): 105992, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36798433

ABSTRACT

Attention depends on cholinergic excitation of prefrontal neurons but is sensitive to perturbation of α5-containing nicotinic receptors encoded by Chrna5. However, Chrna5-expressing (Chrna5+) neurons remain enigmatic, despite their potential as a target to improve attention. Here, we generate complex transgenic mice to probe Chrna5+ neurons and their sensitivity to endogenous acetylcholine. Through opto-physiological experiments, we discover that Chrna5+ neurons contain a distinct population of acetylcholine super-responders. Leveraging single-cell transcriptomics, we discover molecular markers conferring subplate identity on this subset. We determine that Chrna5+ super-responders express a unique complement of GPI-anchored lynx prototoxin genes (Lypd1, Ly6g6e, and Lypd6b), predicting distinct nicotinic receptor regulation. To manipulate lynx regulation of endogenous nicotinic responses, we developed a pharmacological strategy guided by transcriptomic predictions. Overall, we reveal Chrna5-Cre mice as a transgenic tool to target the diversity of subplate neurons in adulthood, yielding new molecular strategies to manipulate their cholinergic activation relevant to attention disorders.

3.
Neuropsychopharmacology ; 48(4): 671-682, 2023 03.
Article in English | MEDLINE | ID: mdl-36635596

ABSTRACT

Cholinergic synapses in prefrontal cortex are vital for attention, but this modulatory system undergoes substantial pre- and post-synaptic alterations during adulthood. To examine the integrated impact of these changes, we optophysiologically probe cholinergic synapses ex vivo, revealing a clear decline in neurotransmission in middle adulthood. Pharmacological dissection of synaptic components reveals a selective reduction in postsynaptic nicotinic receptor currents. Other components of cholinergic synapses appear stable, by contrast, including acetylcholine autoinhibition, metabolism, and excitation of postsynaptic muscarinic receptors. Pursuing strategies to strengthen cholinergic neurotransmission, we find that positive allosteric modulation of nicotinic receptors with NS9283 is effective in young adults but wanes with age. To boost nicotinic receptor availability, we harness the second messenger pathways of the preserved excitatory muscarinic receptors with xanomeline. This muscarinic agonist and cognitive-enhancer restores nicotinic signaling in older mice significantly, in a muscarinic- and PKC-dependent manner. The rescued nicotinic component regains youthful sensitivity to allosteric enhancement: treatment with xanomeline and NS9283 restores cholinergic synapses in older mice to the strength, speed, and receptor mechanism of young adults. Our results reveal a new and efficient strategy to rescue age-related nicotinic signaling deficits, demonstrating a novel pathway for xanomeline to restore cognitively-essential endogenous cholinergic neurotransmission.


Subject(s)
Receptors, Nicotinic , Mice , Animals , Receptors, Nicotinic/metabolism , Nicotine/pharmacology , Cholinergic Agents/pharmacology , Receptors, Muscarinic , Prefrontal Cortex
4.
J Neurosci ; 40(38): 7255-7268, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32817066

ABSTRACT

Optimal attention performance requires cholinergic modulation of corticothalamic neurons in the prefrontal cortex. These pyramidal cells express specialized nicotinic acetylcholine receptors containing the α5 subunit encoded by Chrna5 Disruption of this gene impairs attention, but the advantage α5 confers on endogenous cholinergic signaling is unknown. To ascertain this underlying mechanism, we used optogenetics to stimulate cholinergic afferents in prefrontal cortex brain slices from compound-transgenic wild-type and Chrna5 knock-out mice of both sexes. These electrophysiological experiments identify that Chrna5 is critical for the rapid onset of the postsynaptic cholinergic response. Loss of α5 slows cholinergic excitation and delays its peak, and these effects are observed in two different optogenetic mouse lines. Disruption of Chrna5 does not otherwise perturb the magnitude of the response, which remains strongly mediated by nicotinic receptors and tightly controlled by autoinhibition via muscarinic M2 receptors. However, when conditions are altered to promote sustained cholinergic receptor stimulation, it becomes evident that α5 also works to protect nicotinic responses against desensitization. Rescuing Chrna5 disruption thus presents the double challenge of improving the onset of nicotinic signaling without triggering desensitization. Here, we identify that an agonist for the unorthodox α-α nicotinic binding site can allosterically enhance the cholinergic pathway considered vital for attention. Treatment with NS9283 restores the rapid onset of the postsynaptic cholinergic response without triggering desensitization. Together, this work demonstrates the advantages of speed and resilience that Chrna5 confers on endogenous cholinergic signaling, defining a critical window of interest for cue detection and attentional processing.SIGNIFICANCE STATEMENT The α5 nicotinic receptor subunit (Chrna5) is important for attention, but its advantage in detecting endogenous cholinergic signals is unknown. Here, we show that α5 subunits permit rapid cholinergic responses in prefrontal cortex and protect these responses from desensitization. Our findings clarify why Chrna5 is required for optimal attentional performance under demanding conditions. To treat the deficit arising from Chrna5 disruption without triggering desensitization, we enhanced nicotinic receptor affinity using NS9283 stimulation at the unorthodox α-α nicotinic binding site. This approach successfully restored the rapid-onset kinetics of endogenous cholinergic neurotransmission. In summary, we reveal a previously unknown role of Chrna5 as well as an effective approach to compensate for genetic disruption and permit fast cholinergic excitation of prefrontal attention circuits.


Subject(s)
Acetylcholine/metabolism , Prefrontal Cortex/metabolism , Receptors, Nicotinic/metabolism , Synaptic Transmission , Animals , Female , Male , Mice , Mice, Inbred C57BL , Nicotinic Agonists/pharmacology , Optogenetics , Oxadiazoles/pharmacology , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Pyridines/pharmacology , Receptors, Nicotinic/genetics
5.
Curr Top Behav Neurosci ; 45: 47-69, 2020.
Article in English | MEDLINE | ID: mdl-32601996

ABSTRACT

Acetylcholine regulates the cerebral cortex to sharpen sensory perception and enhance attentional focus. The cellular and circuit mechanisms of this cholinergic modulation are under active investigation in sensory and prefrontal cortex, but the universality of these mechanisms across the cerebral cortex is not clear. Anatomical maps suggest that the sensory and prefrontal cortices receive distinct cholinergic projections and have subtle differences in the expression of cholinergic receptors and the metabolic enzyme acetylcholinesterase. First, we briefly review this anatomical literature and the recent progress in the field. Next, we discuss in detail the electrophysiological effects of cholinergic receptor subtypes and the cell and circuit consequences of their stimulation by endogenous acetylcholine as established by recent optogenetic work. Finally, we explore the behavioral ramifications of in vivo manipulations of endogenous acetylcholine. We find broader similarities than we expected between the cholinergic regulation of sensory and prefrontal cortex, but there are some differences and some gaps in knowledge. In visual, auditory, and somatosensory cortex, the cell and circuit mechanisms of cholinergic sharpening of sensory perception have been probed in vivo with calcium imaging and optogenetic experiments to simultaneously test mechanism and measure the consequences of manipulation. By contrast, ascertaining the links between attentional performance and cholinergic modulation of specific prefrontal microcircuits is more complicated due to the nature of the required tasks. However, ex vivo optogenetic manipulations point to differences in the cholinergic modulation of sensory and prefrontal cortex. Understanding how and where acetylcholine acts within the cerebral cortex to shape cognition is essential to pinpoint novel treatment targets for the perceptual and attention deficits found in multiple psychiatric and neurological disorders.


Subject(s)
Acetylcholine , Cerebral Cortex , Attention , Cognition , Humans , Prefrontal Cortex
6.
eNeuro ; 7(2)2020.
Article in English | MEDLINE | ID: mdl-32184300

ABSTRACT

Homeostatic scaling is a form of synaptic plasticity where individual synapses scale their strengths to compensate for global suppression or elevation of neuronal activity. This process can be studied by measuring miniature EPSP (mEPSP) amplitudes and frequencies following the regulation of activity in neuronal cultures. Here, we demonstrate a quantitative approach to characterize multiplicative synaptic scaling using immunolabelling of hippocampal neuronal cultures treated with tetrodotoxin (TTX) or bicuculline to extract scaling factors for various synaptic proteins. This approach allowed us to directly examine the scaling of presynaptic and postsynaptic scaffolding molecules along with neurotransmitter receptors in primary cultures from mouse and rat hippocampal neurons. We show robust multiplicative scaling of synaptic scaffolding molecules namely, Shank2, PSD95, Bassoon, and AMPA receptor subunits and quantify their scaling factors. We use super-resolution microscopy to calculate scaling factors of surface expressed GluA2 within functional zones of the synapse and show that there is differential and correlated scaling of GluA2 levels within the spine, the postsynaptic density (PSD), and the perisynaptic regions. Our method opens a novel paradigm to quantify relative molecular changes of synaptic proteins within distinct subsynaptic compartments from a large number of synapses in response to alteration of neuronal activity, providing anatomic insights into the intricacies of variability in strength of individual synapses.


Subject(s)
Neuronal Plasticity , Synapses , Animals , Homeostasis , Mice , Nerve Tissue Proteins/genetics , Neurons , Rats , Receptors, AMPA
7.
J Neurosci ; 40(11): 2314-2331, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32005764

ABSTRACT

Distinct components of working memory are coordinated by different classes of inhibitory interneurons in the PFC, but the role of cholecystokinin (CCK)-positive interneurons remains enigmatic. In humans, this major population of interneurons shows histological abnormalities in schizophrenia, an illness in which deficient working memory is a core defining symptom and the best predictor of long-term functional outcome. Yet, CCK interneurons as a molecularly distinct class have proved intractable to examination by typical molecular methods due to widespread expression of CCK in the pyramidal neuron population. Using an intersectional approach in mice of both sexes, we have succeeded in labeling, interrogating, and manipulating CCK interneurons in the mPFC. Here, we describe the anatomical distribution, electrophysiological properties, and postsynaptic connectivity of CCK interneurons, and evaluate their role in cognition. We found that CCK interneurons comprise a larger proportion of the mPFC interneurons compared with parvalbumin interneurons, targeting a wide range of neuronal subtypes with a distinct connectivity pattern. Phase-specific optogenetic inhibition revealed that CCK, but not parvalbumin, interneurons play a critical role in the retrieval of working memory. These findings shine new light on the relationship between cortical CCK interneurons and cognition and offer a new set of tools to investigate interneuron dysfunction and cognitive impairments associated with schizophrenia.SIGNIFICANCE STATEMENT Cholecystokinin-expressing interneurons outnumber other interneuron populations in key brain areas involved in cognition and memory, including the mPFC. However, they have proved intractable to examination as experimental techniques have lacked the necessary selectivity. To the best of our knowledge, the present study is the first to report detailed properties of cortical cholecystokinin interneurons, revealing their anatomical organization, electrophysiological properties, postsynaptic connectivity, and behavioral function in working memory.


Subject(s)
Cholecystokinin/physiology , Interneurons/physiology , Memory, Short-Term/physiology , Mental Recall/physiology , Prefrontal Cortex/physiology , Animals , Appetitive Behavior/physiology , Discrimination Learning/physiology , Discrimination, Psychological/physiology , Female , Genes, Reporter , Interneurons/classification , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/analysis , Odorants , Optogenetics , Parvalbumins/analysis , Patch-Clamp Techniques , Reward , Schizophrenia/physiopathology , Smell/physiology , Synaptic Potentials/physiology
8.
Front Neural Circuits ; 11: 107, 2017.
Article in English | MEDLINE | ID: mdl-29354034

ABSTRACT

Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh) and serotonin (5-HT) have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 pyramidal neurons, which provide feedback modulation of the thalamus, as well as feed-forward excitation of cortical interneurons. Here, we assess the response of these neurons to ACh and 5-HT using whole cell recordings in acute brain slices from mouse cortex. With application of exogenous agonists, we show that individual layer 6 pyramidal neurons are bidirectionally-modulated, with ACh and 5-HT exerting opposite effects on excitability across a number of concentrations. Next, we tested the responses of layer 6 pyramidal neurons to optogenetic release of endogenous ACh or 5-HT. These experiments were performed in brain slices from transgenic mice expressing channelrhodopsin in either ChAT-expressing cholinergic neurons or Pet1-expressing serotonergic neurons. Light-evoked endogenous neuromodulation recapitulated the effects of exogenous neurotransmitters, showing opposing modulation of layer 6 pyramidal neurons by ACh and 5-HT. Lastly, the addition of 5-HT to either endogenous or exogenous ACh significantly suppressed the excitation of pyramidal neurons in prefrontal layer 6. Taken together, this work suggests that the major corticothalamic layer of prefrontal cortex is a substrate for opposing modulatory influences on neuronal activity that could have implications for regulation of attention.


Subject(s)
Acetylcholine/metabolism , Neurons/metabolism , Prefrontal Cortex/metabolism , Serotonin/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Cholinergic Agents/pharmacology , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Optogenetics , Patch-Clamp Techniques , Prefrontal Cortex/anatomy & histology , Prefrontal Cortex/drug effects , Serotonin Agents/pharmacology , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...