Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 136(17): 174312, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22583235

ABSTRACT

The photoinduced hydrogen elimination reaction in thiophenol via the conical intersections of the dissociative (1)πσ∗ excited state with the bound (1)ππ∗ excited state and the electronic ground state has been investigated with ab initio electronic-structure calculations and time-dependent quantum wave-packet calculations. A screening of the coupling constants of the symmetry-allowed coupling modes at the (1)ππ∗-(1)πσ∗ and (1)πσ∗-S(0) conical intersection shows that the SH torsional mode is by far the most important coupling mode at both conical intersections. A model including three intersecting potential-energy surfaces (S(0), (1)ππ∗, (1)πσ∗) and two nuclear degrees of freedom (SH stretch and SH torsion) has been constructed on the basis of ab initio complete-active-space self-consistent field and multireference second-order perturbation theory calculations. The nonadiabatic quantum wave-packet dynamics initiated by optical excitation of the (1)ππ∗ and (1)πσ∗ states has been explored for this three-state two-coordinate model. The photodissociation dynamics is characterized in terms of snapshots of time-dependent wave packets, time-dependent electronic population probabilities, and the branching ratio of the (2)σ/(2)π electronic states of the thiophenoxyl radical. The dependence of the timescale of the photodissociation process and the branching ratio on the initial excitation of the SH stretching and SH torsional vibrations has been analyzed. It is shown that the node structure, which is imposed on the nuclear wave packets by the initial vibrational preparation as well as by the transitions through the conical intersections, has a profound effect on the photodissociation dynamics. The effect of additional weak coupling modes of CC twist (ν(16a)) and ring-distortion (ν(16b)) character has been investigated with three-dimensional and four-dimensional time-dependent wave-packet calculations, and has been found to be minor.

2.
J Chem Phys ; 126(7): 074306, 2007 Feb 21.
Article in English | MEDLINE | ID: mdl-17328604

ABSTRACT

Photodetachment spectroscopy of phenide anion C6H5- is theoretically studied with the aid of electronic structure calculations and quantum dynamical simulations of nuclear motion. The theoretical results are compared with the available experimental data. The vibronic structure of the first, second, and third photoelectron bands associated with the ground X 2A1 and low-lying excited A 2B1 and B 2A2 electronic states of the phenyl radical C6H5 is examined at length. While the X state of the radical is energetically well separated and its interaction is found to be rather weak with the rest, the A and B electronic states are found to be only approximately 0.57 eV apart in energy at the vertical configuration. Low-energy conical intersections between the latter two states are discovered and their impact on the nuclear dynamics underlying the second and third photoelectron bands is delineated. The nuclear dynamics in the X state solely proceeds through the adiabatic path and the theoretically calculated vibrational level structure of this state compares well with the experimental result. Two Condon active totally symmetric (a1) vibrational modes of ring deformation type form the most dominant progression in the first photoelectron band. The existing ambiguity in the assignment of these two vibrational modes is resolved here. The A-B conical intersections drive the nuclear dynamics via nonadiabatic paths, and as a result the second and third photoelectron bands overlap and particularly the third band due to the B state of C6H5 becomes highly diffused and structureless. Experimental photodetachment spectroscopy results are not available for these bands. However, the second band has been detected in electronic absorption spectroscopy measurements. The present theoretical results are compared with these absorption spectroscopy data to establish the nonadiabatic interactions between the A and B electronic states of C6H5.

3.
J Phys Chem A ; 111(10): 1746-61, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17300181

ABSTRACT

The complex vibronic spectra and the nonradiative decay dynamics of the cyclopropane radical cation (CP+) are simulated theoretically with the aid of a time-dependent wave packet propagation approach using the multireference time-dependent Hartree scheme. The theoretical results are compared with the experimental photoelectron spectrum of cyclopropane. The ground and first excited electronic states of CP+ are of X2E' and A2E'' type, respectively. Each of these degenerate electronic states undergoes Jahn-Teller (JT) splitting when the radical cation is distorted along the degenerate vibrational modes of e' symmetry. The JT split components of these two electronic states can also undergo pseudo-Jahn-Teller (PJT)-type crossings via the vibrational modes of e'', a1'' and a2'' symmetries. These lead to the possibility of multiple multidimensional conical intersections and highly nonadiabatic nuclear motions in these coupled manifolds of electronic states. In a previous publication [J. Phys. Chem. A 2004, 108, 2256], we investigated the JT interactions alone in the X2E' ground electronic manifold of CP+. In the present work, the JT interactions in the A2E'' electronic manifold are treated, and our previous work is extended by considering the coupling between the X2E' and A2E'' electronic states of CP+. The nuclear dynamics in this coupled manifold of two JT split doubly degenerate electronic states is simulated by considering fourteen active and most relevant vibrational degrees of freedom. The vibronic level spectra and the ultrafast nonradiative decay of the excited cationic states are examined and are related to the highly complex entanglement of electronic and nuclear degrees of freedom in this prototypical molecular system.

4.
J Comput Chem ; 27(10): 1093-100, 2006 Jul 30.
Article in English | MEDLINE | ID: mdl-16691569

ABSTRACT

The photodetachment spectroscopy of B3- anion is theoretically studied with the aid of a quantum dynamical approach. The theoretical results are compared with the available experimental photoelectron spectra of B3-. Both B3- and B3 possess D(3h) symmetry at the equilibrium configuration of their electronic ground state. Distortion of B3 along its degenerate vibrational mode nu2 splits the degeneracy of its excited C2E' electronic manifold and exhibits (E [symbol: see text] e)-Jahn-Teller (JT) activity. The components of the JT split potential energy surface form conical intersections, and they can also undergo pseudo-Jahn-Teller (PJT) crossings with the X2A1' electronic ground state of B3 via the degenerate nu2 vibrational mode. The impact of the JT and PJT interactions on the nuclear dynamics of B3 in its X2A1'-C2E' electronic states is examined here by establishing a diabatic model Hamiltonian. The parameters of the electronic part of this Hamiltonian are calculated by performing electronic structure calculations and the nuclear dynamics on it is simulated by solving quantum eigenvalue equation. The theoretical results are in good accord with the experimental data.

5.
J Chem Phys ; 123(11): 114308, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16392560

ABSTRACT

We report a theoretical account on the static and dynamic aspects of the Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) interactions in the ground and first excited electronic states of the ethane radical cation. The findings are compared with the experimental photoionization spectrum of ethane. The present theoretical approach is based on a model diabatic Hamiltonian and with the parameters derived from ab initio calculations. The optimized geometry of ethane in its electronic ground state (1A1g) revealed an equilibrium staggered conformation belonging to the D3d symmetry point group. At the vertical configuration, the ethane radical cation belongs to this symmetry point group. The ground and low-lying electronic states of this radical cation are of 2Eg, 2A1g, 2Eu, and 2A2u symmetries. Elementary symmetry selection rule suggests that the degenerate electronic states of the radical cation are prone to the JT distortion when perturbed along the degenerate vibrational modes of eg symmetry. The 2A1g state is estimated to be approximately 0.345 eV above the 2Eg state and approximately 2.405 eV below the 2Eu state at the vertical configuration. The symmetry selection rule also suggests PJT crossings of the 2A1g and the 2Eg electronic states of the radical cation along the vibrational modes of eg symmetry and such crossings appear to be energetically favorable also. The irregular vibrational progressions, with numerous shoulders and small peaks, observed below 12.55 eV in the experimental recording are manifestations of the dynamic (E x e)-JT effect. Our findings revealed that the PJT activity of the degenerate vibrational modes is particularly strong in the 2Eg-2A1g electronic manifold which leads to a broad and diffuse structure of the observed photoelectron band.

SELECTION OF CITATIONS
SEARCH DETAIL
...