Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3741, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355896

ABSTRACT

Inadequate conservation of medicinal plants can affect their productivity. Traditional assessments and strategies are often time-consuming and linked with errors. Utilizing herbs has been an integral part of the traditional system of medicine for centuries. However, its sustainability and conservation are critical due to climate change, over-harvesting and habitat loss. The study reveals how machine learning algorithms, geographic information systems (GIS) being a powerful tool for mapping and spatial analysis, and soil information can contribute to a swift decision-making approach for actual forethought and intensify the productivity of vulnerable curative plants of specific regions to promote drug discovery. The data analysis based on machine learning and data mining techniques over the soil, medicinal plants and GIS information can predict quick and effective results on a map to nurture the growth of the herbs. The work incorporates the construction of a novel dataset by using the quantum geographic information system tool and recommends the vulnerable herbs by implementing different supervised algorithms such as extra tree classifier (EXTC), random forest, bagging classifier, extreme gradient boosting and k nearest neighbor. Two unique approaches suggested for the user by using EXTC, firstly, for a given subregion type, its suitable soil classes and secondly, for soil type from the user, its respective subregion labels are revealed, finally, potential medicinal herbs and their conservation status are visualised using the choropleth map for classified soil/subregion. The research concludes on EXTC as it showcases outstanding performance for both soil and subregion classifications compared to other models, with an accuracy rate of 99.01% and 98.76%, respectively. The approach focuses on serving as a comprehensive and swift reference for the general public, bioscience researchers, and conservationists interested in conserving medicinal herbs based on soil availability or specific regions through maps.


Subject(s)
Plants, Medicinal , Soil , Machine Learning , Ecosystem , Algorithms
2.
Diagnostics (Basel) ; 13(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37998588

ABSTRACT

Prompt diagnostics and appropriate cancer therapy necessitate the use of gene expression databases. The integration of analytical methods can enhance detection precision by capturing intricate patterns and subtle connections in the data. This study proposes a diagnostic-integrated approach combining Empirical Bayes Harmonization (EBS), Jensen-Shannon Divergence (JSD), deep learning, and contour mathematics for cancer detection using gene expression data. EBS preprocesses the gene expression data, while JSD measures the distributional differences between cancerous and non-cancerous samples, providing invaluable insights into gene expression patterns. Deep learning (DL) models are employed for automatic deep feature extraction and to discern complex patterns from the data. Contour mathematics is applied to visualize decision boundaries and regions in the high-dimensional feature space. JSD imparts significant information to the deep learning model, directing it to concentrate on pertinent features associated with cancerous samples. Contour visualization elucidates the model's decision-making process, bolstering interpretability. The amalgamation of JSD, deep learning, and contour mathematics in gene expression dataset analysis diagnostics presents a promising pathway for precise cancer detection. This method taps into the prowess of deep learning for feature extraction while employing JSD to pinpoint distributional differences and contour mathematics for visual elucidation. The outcomes underscore its potential as a formidable instrument for cancer detection, furnishing crucial insights for timely diagnostics and tailor-made treatment strategies.

3.
Diagnostics (Basel) ; 13(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37998597

ABSTRACT

One of the most prevalent cancers is oral squamous cell carcinoma, and preventing mortality from this disease primarily depends on early detection. Clinicians will greatly benefit from automated diagnostic techniques that analyze a patient's histopathology images to identify abnormal oral lesions. A deep learning framework was designed with an intermediate layer between feature extraction layers and classification layers for classifying the histopathological images into two categories, namely, normal and oral squamous cell carcinoma. The intermediate layer is constructed using the proposed swarm intelligence technique called the Modified Gorilla Troops Optimizer. While there are many optimization algorithms used in the literature for feature selection, weight updating, and optimal parameter identification in deep learning models, this work focuses on using optimization algorithms as an intermediate layer to convert extracted features into features that are better suited for classification. Three datasets comprising 2784 normal and 3632 oral squamous cell carcinoma subjects are considered in this work. Three popular CNN architectures, namely, InceptionV2, MobileNetV3, and EfficientNetB3, are investigated as feature extraction layers. Two fully connected Neural Network layers, batch normalization, and dropout are used as classification layers. With the best accuracy of 0.89 among the examined feature extraction models, MobileNetV3 exhibits good performance. This accuracy is increased to 0.95 when the suggested Modified Gorilla Troops Optimizer is used as an intermediary layer.

4.
Diagnostics (Basel) ; 13(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37835796

ABSTRACT

The early detection and classification of lung cancer is crucial for improving a patient's outcome. However, the traditional classification methods are based on single machine learning models. Hence, this is limited by the availability and quality of data at the centralized computing server. In this paper, we propose an ensemble Federated Learning-based approach for multi-order lung cancer classification. This approach combines multiple machine learning models trained on different datasets allowing for improvising accuracy and generalization. Moreover, the Federated Learning approach enables the use of distributed data while ensuring data privacy and security. We evaluate the approach on a Kaggle cancer dataset and compare the results with traditional machine learning models. The results demonstrate an accuracy of 89.63% with lung cancer classification.

5.
Entropy (Basel) ; 25(2)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36832611

ABSTRACT

Today's world faces a serious public health problem with cancer. One type of cancer that begins in the breast and spreads to other body areas is breast cancer (BC). Breast cancer is one of the most prevalent cancers that claim the lives of women. It is also becoming clearer that most cases of breast cancer are already advanced when they are brought to the doctor's attention by the patient. The patient may have the evident lesion removed, but the seeds have reached an advanced stage of development or the body's ability to resist them has weakened considerably, rendering them ineffective. Although it is still much more common in more developed nations, it is also quickly spreading to less developed countries. The motivation behind this study is to use an ensemble method for the prediction of BC, as an ensemble model aims to automatically manage the strengths and weaknesses of each of its separate models, resulting in the best decision being made overall. The main objective of this paper is to predict and classify breast cancer using Adaboost ensemble techniques. The weighted entropy is computed for the target column. Taking each attribute's weights results in the weighted entropy. Each class's likelihood is represented by the weights. The amount of information gained increases with a decrease in entropy. Both individual and homogeneous ensemble classifiers, created by mixing Adaboost with different single classifiers, have been used in this work. In order to deal with the class imbalance issue as well as noise, the synthetic minority over-sampling technique (SMOTE) was used as part of the data mining pre-processing. The suggested approach uses a decision tree (DT) and naive Bayes (NB), with Adaboost ensemble techniques. The experimental findings shown 97.95% accuracy for prediction using the Adaboost-random forest classifier.

SELECTION OF CITATIONS
SEARCH DETAIL
...