Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Surg ; 9: 962867, 2022.
Article in English | MEDLINE | ID: mdl-36117842

ABSTRACT

Women and minorities leave or fail to advance in the neurosurgical workforce more frequently than white men at all levels from residency to academia. The consequences of this inequity are most profound in fields such as traumatic brain injury (TBI), which lacks objective measures. We evaluated published articles on TBI clinical research and found that TBI primary investigators or corresponding authors were 86·5% White and 59·5% male. First authors from the resulting publications were 92.6% white. Most study participants were male (68%). 64·4% of NIH-funded TBI clinical trials did not report or recruit any black subjects and this number was even higher for other races and the Hispanic ethnicity. We propose several measures for mitigation of the consequences of the inequitable workforce in traumatic brain injury that could potentially contribute to more equitable outcomes. The most immediately feasible of these is validation and establishment of objective measures for triage and prognostication that are less susceptible to bias than current protocols. We call for incorporation of gender and race neutral metrics for TBI evaluation to standardize classification of injury. We offer insights into how socioeconomic factors contribute to increased death rates from women and minority groups. We propose the need to study how these disparities are caused by unfair health insurance reimbursement practices. Surgical and clinical research inequities have dire consequences, and until those inequities can be corrected, mitigation of those consequences requires system wide change.

2.
J Neurotrauma ; 39(15-16): 1015-1029, 2022 08.
Article in English | MEDLINE | ID: mdl-35403432

ABSTRACT

Epidural spinal cord stimulation (eSCS) has been recently recognized as a potential therapy for chronic spinal cord injury (SCI). eSCS has been shown to uncover residual pathways within the damaged spinal cord. The purpose of this review is to summarize the key findings to date regarding the use of eSCS in SCI. Searches were carried out using MEDLINE, EMBASE, and Web of Science database and reference lists of the included articles. A combination of medical subject heading terms and keywords was used to find studies investigating the use of eSCS in SCI patients to facilitate volitional movement and to restore autonomic function. The risk of bias was assessed using Risk Of Bias In Non-Randomized Studies of Interventions tool for nonrandomized studies. We were able to include 40 articles that met our eligibility criteria. The studies included a total of 184 patient experiences with incomplete or complete SCI. The majority of the studies used the Medtronic 16 paddle lead. Around half of the studies reported lead placement between T11- L1. We included studies that assessed motor (n = 28), autonomic (n = 13), and other outcomes (n = 10). The majority of the studies reported improvement in outcomes assessed. The wide range of included outcomes demonstrates the effectiveness of eSCS in treating a diverse SCI population. However, the current studies cannot definitively conclude which patients benefit the most from this intervention. Further study in this area is needed to allow improvement of the eSCS technology and allow it to be more widely available for chronic SCI patients.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Epidural Space , Humans , Movement , Spinal Cord , Spinal Cord Injuries/therapy
3.
Front Syst Neurosci ; 14: 35, 2020.
Article in English | MEDLINE | ID: mdl-32714156

ABSTRACT

Background: Chronic spinal cord injury (SCI) portends a low probability of recovery, especially in the most severe subset of motor-complete injuries. Active spinal cord stimulation with or without intensive locomotor training has been reported to restore movement after traumatic SCI. Only three cases have been reported where participants developed restored volitional movement with active stimulation turned off after a period of chronic stimulation and only after intensive rehabilitation with locomotor training. It is unknown whether restoration of movement without stimulation is possible after stimulation alone. Objective: We describe the development of spontaneous volitional movement (SVM) without active stimulation in a subset of participants in the Epidural Stimulation After Neurologic Damage (ESTAND) trial, in which locomotor training is not prescribed as part of the study protocol, and subject's rehabilitation therapies are not modified. Methods: Volitional movement was evaluated with the Brain Motor Control Assessment using sEMG recordings and visual examination at baseline and at follow-up visits with and without stimulation. Additional functional assessment with a motor-assisted bicycle exercise at follow-up with and without stimulation identified generated work with and without effort. Results: The first seven participants had ASIA Impairment Scale (AIS) A or B thoracic SCI, a mean age of 42 years, and 7.7 years post-injury on average. Four patients developed evidence of sustained volitional movement, even in the absence of active stimulation after undergoing chronic epidural spinal cord stimulation (eSCS). Significant increases in volitional power were found between those observed to spontaneously move without stimulation and those unable (p < 0.0005). The likelihood of recovery of spontaneous volitional control was correlated with spasticity scores prior to the start of eSCS therapy (p = 0.048). Volitional power progressively improved over time (p = 0.016). Additionally, cycling was possible without stimulation (p < 0.005). Conclusion: While some SVM after eSCS has been reported in the literature, this study demonstrates sustained restoration without active stimulation after long-term eSCS stimulation in chronic and complete SCI in a subset of participants. This finding supports previous studies suggesting that "complete" SCI is likely not as common as previously believed, if it exists at all in the absence of transection and that preserved pathways are substrates for eSCS-mediated recovery in clinically motor-complete SCI. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03026816.

SELECTION OF CITATIONS
SEARCH DETAIL
...