Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 128(15): 5010-20, 2006 Apr 19.
Article in English | MEDLINE | ID: mdl-16608335

ABSTRACT

Methyl transfer reactions are important in a number of biochemical pathways. An important class of methyltransferases uses the cobalt cofactor cobalamin, which receives a methyl group from an appropriate methyl donor protein to form an intermediate organometallic methyl-Co bond that subsequently is cleaved by a methyl acceptor. Control of the axial ligation state of cobalamin influences both the mode (i.e., homolytic vs heterolytic) and the rate of Co-C bond cleavage. Here we have studied the axial ligation of a corrinoid iron-sulfur protein (CFeSP) that plays a key role in energy generation and cell carbon synthesis by anaerobic microbes, such as methanogenic archaea and acetogenic bacteria. This protein accepts a methyl group from methyltetrahydrofolate forming Me-Co(3+)CFeSP that then donates a methyl cation (Me) from Me-Co(3+)CFeSP to a nickel site on acetyl-CoA synthase. To unambiguously establish the binding scheme of the corrinoid cofactor in the CFeSP, we have combined resonance Raman, magnetic circular dichroism, and EPR spectroscopic methods with computational chemistry. Our results clearly demonstrate that the Me-Co3+ and Co2+ states of the CFeSP have an axial water ligand like the free MeCbi+ and Co(2+)Cbi+ cofactors; however, the Co-OH2 bond length is lengthened by about 0.2 angstroms for the protein-bound cofactor. Elongation of the Co-OH2 bond of the CFeSP-bound cofactor is proposed to make the cobalt center more "Co1+-like", a requirement to facilitate heterolytic Co-C bond cleavage.


Subject(s)
Bacterial Proteins/chemistry , Iron-Sulfur Proteins/chemistry , Bacteria, Anaerobic/chemistry , Bacterial Proteins/metabolism , Binding Sites , Circular Dichroism , Electron Spin Resonance Spectroscopy , Iron-Sulfur Proteins/metabolism , Spectrum Analysis, Raman , Thermodynamics
2.
Nitric Oxide ; 13(4): 226-31, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16126420

ABSTRACT

Subunit heterogeneity within a particular subunit in hemoglobin A have been explored with electron paramagnetic resonance spectroscopy using the nitrosyl hemes in Ni-Fe hybrid Hb under various solution conditions. Our previous studies on the crystal structure of NiHb demonstrated the presence of subunit heterogeneity within alpha-subunit. To further cross check this hypothesis, we made a hybrid Hb in which either the alpha- or beta-subunit contains iron, which alone can bind to NO. By this way dynamic exchange between penta- and hexa-coordinated forms within a subunit was confirmed. Upon the addition of inositol hexa phosphate (IHP) to these hybrids, R to T state transition is observed for [alpha(2)(Fe-NO)beta(2)(Ni)] but such a direct transformation is less marked in [alpha(2)(Ni)beta(2)(Fe-NO)]. Hence the bond between N(epsilon) and Fe is fundamental to the structure-function relation in Hb, as the motion of this nitrogen triggers the vast transformation, which occurs in the whole molecule on attachment of NO.


Subject(s)
Heme/chemistry , Heme/metabolism , Hemoglobins/metabolism , Iron/metabolism , Nickel/metabolism , Nitrogen/chemistry , Electron Spin Resonance Spectroscopy , Hemoglobins/chemistry , Humans , Recombinant Fusion Proteins
3.
J Am Chem Soc ; 126(50): 16361-7, 2004 Dec 22.
Article in English | MEDLINE | ID: mdl-15600337

ABSTRACT

Resonance Raman (RR) spectra are reported for mesoporphyrin IX bound to the Fab fragment of the ferrochelatase antibody 7G12. Binding induces activation of a Raman band at 680 cm(-1), which is assigned to an out-of-plane porphyrin vibration, gamma15. This is exactly the predicted effect of distorting mesoporphyrin to the geometry of N-methylmesoporphyrin IX, the 7G12 hapten, based on DFT/CIS modeling of the RR spectrum. The modeling also shows that the pyrrole ring that is tilted out of the porphyrin plane bears a nitrogen lone pair, which is therefore available for coordination by an incoming metal ion. The 680 cm(-1) band intensity is approximately 3 times higher for the affinity-matured antibody than for the germline precursor antibody, while intermediate values are found for variants in which germline residues are mutated to mature residues or vice versa. Thus, RR spectroscopy reveals an evolution from weak substrate distortion in the germline antibody to strong substrate distortion in the affinity-matured antibody, and supports the view that catalysis involves a substrate strain mechanism.


Subject(s)
Ferrochelatase/immunology , Immunoglobulin Fragments/chemistry , Mesoporphyrins/chemistry , Computer Simulation , Ferrochelatase/chemistry , Models, Chemical , Models, Molecular , Pyrroles/chemistry , Spectrum Analysis, Raman/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...